Please wait a minute...
Journal of ZheJiang University(Medical Science)  2017, Vol. 46 Issue (5): 505-510    DOI: 10.3785/j.issn.1008-9292.2017.10.09
    
Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer
LI Aijing1, PAN Yuning2, CHEN Bin1, XIA Jianbi1, GAN Fang1, JIN Yinhua1, ZHENG Jianjun1
1. Department of Radiology, Ningbo Second Hospital, Ningbo 315010, Zhejiang Province, China;
2. Department of Radiology, Ningbo First Hospital, Ningbo 315010, Zhejiang Province, China
Download:   PDF(999KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the association of parameters in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using reference region model with prognostic factors and molecular subtypes of breast cancer.Methods: MRI and pathological data of 50 patients with pathologically confirmed invasive ductal carcinoma of the breast were retrospectively analyzed. Reference region model was applied to analyze pharmacokinetic quantitative parameters including volume transfer constant (RR Ktrans), rate constant (Kep) and the ratio of Ktrans to extracellular space volume (Ktrans/Ve). The associations of the above parameters with prognostic factors and molecular subtypes of breast cancer were analyzed.Results: RR Ktrans and Kep were significantly higher in patients of histological grade 3 compared with those of histological grade 1 & 2 (all P<0.05); and the patients with estrogen receptor (ER)-negative and/or progesterone receptor (PR)-negative also had higher RR Ktrans and Kep than those with ER-positive or PR-positive (all P<0.05). For immunohistochemistry, RR Ktrans and Kep were significantly higher in triple negative breast cancer compared with luminal type breast cancer (all P<0.05).Conclusion: High RR Ktrans and Kep are associated with poor prognosis of breast cancer, and which can also be used to distinguish molecular subtypes of breast cancer.



Key wordsMagnetic resonance imaging/methods      Gadolinium/diagnostic use      Prognosis      Retrospective studies      Breast neoplasms/diagnosis      Models,biological      Hemodynamics     
Received: 19 April 2017      Published: 25 October 2017
CLC:  R445.2  
  R737.9  
Cite this article:

LI Aijing, PAN Yuning, CHEN Bin, XIA Jianbi, GAN Fang, JIN Yinhua, ZHENG Jianjun. Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer. Journal of ZheJiang University(Medical Science), 2017, 46(5): 505-510.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2017.10.09     OR     http://www.zjujournals.com/xueshu/med/Y2017/V46/I5/505


动态增强磁共振成像参照物模型定量参数与乳腺癌预后因素及分子病理分型的关系

目的:评估动态增强磁共振成像(DCE-MRI)参照物模型定量参数与乳腺浸润性导管癌患者预后相关因素和乳腺癌分子病理分型之间的相关性。方法:回顾性分析50例经病理学检查证实的浸润性导管癌患者的MRI和病理学检查资料,运用DCE-MRI参照物模型测量药代动力学定量参数,包括病灶相对肌肉的容量转运常数(RR Ktrans)、病灶的速率常数(Kep)、病灶的容量转运常数与肌肉的血管外细胞外间隙容积比值(Ktrans/Ve),分析上述定量参数与乳腺癌患者预后相关因素和乳腺癌分子病理分型之间的相关性。结果:组织学分级为3级的病灶的平均RR Ktrans和Kep值高于组织分级为1~2级的病灶(均P<0.05);雌激素受体(ER)阴性者和孕激素受体(PR)阴性者的平均RR Ktrans值和Kep值分别高于ER阳性者和PR阳性者(均P<0.05)。三阴性乳腺癌患者的RR Ktrans和Kep高于Luminal型乳腺癌患者(均P<0.05)。结论:DCE-MRI参照物模型所得定量参数RR Ktrans和Kep有助于预测乳腺癌的预后和鉴别乳腺癌的分子病理分型。


关键词: 乳腺肿瘤/诊断,  钆/诊断应用,  预后,  模型,  生物学,  血流动力学,  回顾性研究,  磁共振成像/方法 
[[1]]   BERG W A, GUTIERREZ L, NESSAIVER M S, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer[J]. Radiology,2004,233(3):830-849.
[[2]]   李海歌,刘斐,韩晖云,等.动态增强磁共振多时相减影技术在常见乳腺肿瘤诊断中的应用[J].中华医学杂志,2013,93(17):1318-1320. LI Haige, LIU Fei, HAN Huiyun, et al. Application value of multiple phase subtraction imaging of dynamic contrast enhanced magnetic resonance imaging in common breast tumor[J]. National Medical Journal of China,2013,93(17):1318-1320.(in Chinese)
[[3]]   KIM J Y, KIM S H, KIM Y J, et al. Enhancement parameters on dynamic contrast enhanced breast MRI:do they correlate with prognostic factors and subtypes of breast cancers[J]. Magn Reson Imaging,2015,33(1):72-80.
[[4]]   BELLI P, COSTANTINI M, BUFI E, et al. Diffusion magnetic resonance imaging in breast cancer characterisation:correlations between the apparent diffusion coefficient and major prognostic factors[J]. Radiol Med,2015,120(3):268-276.
[[5]]   KOO H R, CHO N, SONG I C, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers[J]. J Magn Reson Imaging,2012,36(1):145-151.
[[6]]   李瑞敏,顾雅佳,毛健,等.定量动态增强MRI鉴别乳腺良恶性病变的研究[J].中华放射学杂志,2011,45(2):164-169. LI Ruimin, GU Yajia, MAO Jian, et al. Evaluation of quantitative dynamic contrast enhanced MRI in differential diagnosis of breast lesions[J]. Chinese Journal of Radiology,2011,45(2):164-169. (in Chinese)
[[7]]   LEE J, PLATT S, KENT M, et al. An analysis of the pharmacokinetic parameter ratios in DCE-MRI using the reference region model[J]. Magn Reson Imaging,2012,30(1):26-35.
[[8]]   王林伟,袁静萍,李雁.乳腺癌组织学分级系统的研究进展和发展方向[J].实用肿瘤学杂志,2014,28(2):160-164. WANG Linwei,YUAN Jingping,LI Yan.Research progress and development direction on histological classification system of breast cancer[J]. Practical Oncology Journal,2014,28(2):160-164.(in Chinese)
[[9]]   于洋,霍天龙,赖云耀,等.不同分子亚型乳腺癌的MRI和病理特征初探[J].中华放射学杂志,2014,48(3):184-188. YU Yang, HUO Tianlong, LAI Yunyao, et al. MRI and pathological features of different molecular subtypes of breast cancer[J]. Chinese Journal of Radiology,2014,48(3):184-188. (in Chinese)
[[10]]   杨钱,陈洁,李宏江,等.不同分子亚型乳腺癌的临床病理特征及预后分析[J].中华肿瘤学杂志,2008,30(6):456-461. YANG Qian, CHEN Jie, LI Hongjiang, et al. Clinical characteristics and prognosis of different subtypes of breast cancer[J]. Chinese Journal of Oncology,2008,30(6):456-461. (in Chinese)
[[11]]   YU Y, JIANG Q, MIAO Y, et al. Quantitative analysis of clinical dynamic contrast-enhanced MR imaging for evaluating treatment response in human breast cancer[J]. Radiology,2010,257(1):47-55.
[[12]]   LI S P, PADHANI A R, TAYLOR N J, et al. Vascular characterisation of triple negative breast carcinomas using dynamic MRI[J]. Eur Radiol,2011,21(7):1364-1373.
[[13]]   TOFTS P S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging[J]. J Magn Reson Imaging,1997,7(1):91-101.
[[14]]   李丽环,刘万花,王瑞,等.MRI定量增强参数与乳腺癌预后因子及分型的相关性[J].中华放射学杂志,2016,50(5):329-333. LI Lihuan, LIU Wanhua, WANG Rui, et al. Correlation of quantitative perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast carcinoma[J]. Chinese Journal of Radiology,2016,50(5):329-333. (in Chinese)
[[15]]   赵莉芸,周纯武,张仁知,等.动态增强MRI定量参数与乳腺癌分子亚型的关系[J].中国医学影像技术,2013,29(7):1126-1130. ZHAO Liyun, ZHOU Chunwu, ZHANG Renzhi, et al. Correlation of quantitative parameters of dynamic contrast-enhanced MRI with subtypes of breast carcinoma[J]. Chinese Journal of Medical Imaging Technology,2013,29(7):1126-1130. (in Chinese)
[1] LIU Chunmei, HUANG Pintong, WANG Yao, ZHANG Xu, YOU Xiangdong. Value of ultrasonography in diagnosis of xanthogranulomatous cholecystitis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 552-556.
[2] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 473-480.
[3] HU Jing, ZHENG Lu, ZHANG Huanle, ZHANG Sandian, XU Guodong. Expression and prognostic value of memory T lymphocyte in patients with non-small cell lung cancer following radiotherapy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 523-528.
[4] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 462-467.
[5] WANG Subo, ZHAO Zhenhua, HU Hongjie, YANG Jianfeng, ZHAO Li, YANG Liming, WANG Cheng. Application of dynamic-contrast enhanced magnetic resonance pharmacokinetic models in differential diagnosis of cellular uterine leiomyoma[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 498-504.
[6] PEI Lei, XU Jingjing, ZHANG Minming. Correlation between high signal intensity in cerebrum nucleus on unenhanced T1-weighted MR images and number of previous gadolinium-based contrast agent administration[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 487-491.
[7] ZHANG Meixia, ZHOU Ying, ZHANG Ruiting, ZHANG Sheng, LOU Min. Maximal infarct volume to benefit from intravenous thrombolysis and its relation with onset to treatment time[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 384-389.
[8] FENG Xuewen, CHEN Zhicai, ZHONG Genlong, LOU Min. Safety of tirofiban in patients with acute cerebral infarct receiving endovascular therapy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 397-404.
[9] LAI Zhenzhen, ZHANG Sheng, ZHONG Genlong, ZHANG Xiaocheng, CHEN Qingmeng, LOU Min. Relationship between dynamic CT angiography-based collateral flow evaluation and outcome of patients with stroke induced by acute basilar artery occlusion[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 371-376.
[10] WANG Qingsong, ZHANG Sheng, ZHANG Meixia, CHEN Zhicai, LOU Min. Collateral score based on CT perfusion can predict the prognosis of patients with anterior circulation ischemic stroke after thrombectomy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 377-383.
[11] ZHANG Xiaoqun, WANG Qiwen, WANG Xin, XU Xiaolei, ZHU Jianhua. Comparison of limus-eluting stent with paclitaxel-eluting stent for patients with coronary small vessel disease:a systematic review and meta-analysis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 305-314.
[12] YAO Guorong,FU Yunfeng,LI Yanli,ZHOU Caiyun,LV Weiguo. Expression and clinical significance of DNAJB11 in epithelial ovarian cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(2): 173-178.
[13] YAO Guorong, FU Yunfeng, LI Yanli, ZHOU Caiyun, LV Weiguo. Expression and clinical significance of DNAJB11 in epithelial ovarian cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(2): 173-178.
[14] CAI Cheng,WANG Jianping,ZHONG Zhifeng,DAI Zhihui,WANG Qinghua,DONG Wuzhen,SHI Hongqi,LIU Qingwei,DU Jinlin. Hypoxia-inducible factor-1α and CD133 predicts pathological complete response and survival for locally advanced rectal cancer patients after neoadjuvant chemoradiotherapy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 36-43.
[15] WU Han,WANG Zhongjin,MING Wenjie,WANG Shuang,DING Meiping. Monitoring time of interictal epileptiform discharges by long-term video EEG in patients with epilepsy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 30-35.