Please wait a minute...
Journal of ZheJiang University(Medical Science)  2017, Vol. 46 Issue (5): 498-504    DOI: 10.3785/j.issn.1008-9292.2017.10.08
    
Application of dynamic-contrast enhanced magnetic resonance pharmacokinetic models in differential diagnosis of cellular uterine leiomyoma
WANG Subo1,2, ZHAO Zhenhua1, HU Hongjie3, YANG Jianfeng1, ZHAO Li1, YANG Liming1, WANG Cheng1
1. Department of Radiology, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang Province, China;
2. Department of Radiology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China;
3. Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310016, China
Download:   PDF(1033KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To assess the application of the dynamic-contrast enhanced magnetic resonance imaging(DCE-MRI)pharmacokinetics models in differential diagnosis of cellular uterine leiomyoma.Methods: Sixty four patients with uterine leiomyoma confirmed by surgery and pathology were enrolled in the study between September 2015 and September 2016, including 30 cases of classical leiomyoma, 13 cases of cellular leiomyoma and 21 cases of degenerative leiomyoma. All patients underwent DCE-MRI before surgery. Reference region (RR) model, extended tofts (ET) model and exchange (EC) model were used to quantitatively analyze DCE-MRI data, and their differences among different pathological types of uterine leiomyoma were observed. Receiver operating characteristic (ROC) curve was used to evaluate the efficiency of the quantitative perfusion parameters in differential diagnosis of cellular uterine leiomyoma.Results: The values of Ktrans(transfer constant), Kep(efflux rate constant) in RR model, Ktrans, Kep, Vp (blood plasma volume ratio) in ET model and Ve(plasma volume ratio), Fp(plasma flow)in EC model of cellular uterine leiomyoma were higher than those of classical type(P<0.05 or P<0.01). The values of Ktrans, Kep in RR model,Ktrans,Kep, Ve,Vp in ET model and Ve,Vp,Fp in EC model of cellular uterine leiomyoma were higher than those of degenerative uterine leiomyoma(P<0.05 or P<0.01). There were no significant differences in other quantitative perfusion parameters among three types of uterine leiomyoma (all P>0.05). ROC curves revealed that the Ktrans of the ET model was more effective in diagnosing cellular uterine leiomyoma, the area under the curve (AUC) was 0.929, and the sensitivity and specificity were 92.3% and 83.7%, respectively; meanwhile, the AUCs of Fp of the EC model, Ktrans of the RR model and Kep of the ET model in diagnosis of cellular uterine leiomyoma were 0.867, 0.849 and 0.837, the sensitivities were 91.7%, 84.6% and 92.3%, and the specificities were 78.0%, 76.0% and 73.5%, respectively. Conclusions: Three pharmacokinetics models can be used in the differentiation of cellular uterine leiomyoma from other types of uterine leiomyoma. Ktrans of the ET model has higher sensitivity and specificity in differential diagnosis of cellular uterine leiomyoma.



Key wordsUterine neoplasms/diagnosis      Magnetic resonance imaging      Hemodynamics      Leiomyoma/diagnosis      Diagnosis,differential      Models,biological     
Received: 24 August 2017      Published: 25 October 2017
CLC:  R445.2  
  R737.3  
Cite this article:

WANG Subo, ZHAO Zhenhua, HU Hongjie, YANG Jianfeng, ZHAO Li, YANG Liming, WANG Cheng. Application of dynamic-contrast enhanced magnetic resonance pharmacokinetic models in differential diagnosis of cellular uterine leiomyoma. Journal of ZheJiang University(Medical Science), 2017, 46(5): 498-504.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2017.10.08     OR     http://www.zjujournals.com/xueshu/med/Y2017/V46/I5/498


动态对比增强磁共振药代动力学模型在鉴别富细胞型子宫平滑肌瘤中的应用

目的:比较动态对比增强磁共振(DCE-MRI)三种血流动力学模型定量灌注参数鉴别诊断富细胞型子宫平滑肌瘤的价值。方法:连续收集2015年9月至2016年9月绍兴市人民医院经病理学检查证实的子宫平滑肌瘤患者64例(普通型30例,富细胞型13例,退变型21例)。所有患者术前行盆腔DCE-MRI扫描,应用Reference Region (RR)模型、Extended Tofts (ET)模型和Exchange (EC)模型测量子宫平滑肌瘤的定量灌注参数值,对比分析子宫平滑肌瘤不同病理类型间定量灌注参数的差异,并采用受试者工作特征(ROC)曲线评价其诊断富细胞型子宫平滑肌瘤的效能。结果:富细胞型子宫平滑肌瘤RR模型中容量转运常数(Ktrans)、速率常数(Kep),ET模型中Ktrans、Kep、血管间隙容积分数(Vp),EC模型中血管外细胞外间隙容积分数(Ve)、血浆流量(Fp)值高于普通型子宫平滑肌瘤(均P<0.05或P<0.01);富细胞型子宫平滑肌瘤RR模型中的Ktrans、Kep,ET模型中Ktrans、Kep、Ve、Vp,EC模型中的Ve、Vp、Fp值高于退变型子宫平滑肌瘤(均P<0.05或P<0.01),其余参数在三种亚型的肌瘤中差异均无统计学意义(均P>0.05)。ROC曲线分析结果显示,ET模型中的Ktrans诊断富细胞型子宫平滑肌瘤的效率较高,曲线下面积为0.929,敏感度和特异度分别为92.3%和83.7%;此外,EC模型中的Fp、RR模型中的Ktrans和ET模型中的Kep诊断富细胞型子宫平滑肌瘤的效率也较高,曲线下面积分别为0.867、0.849和0.837,敏感度分别为91.7%、84.6%和92.3%,特异度分别为78.0%、76.0%和73.5%。结论:三种血流动力学模型定量灌注参数鉴别富细胞型子宫平滑肌瘤均具有较高价值,其中以ET模型中的Ktrans诊断富细胞型子宫平滑肌瘤的敏感度和特异度最高。


关键词: 平滑肌瘤/诊断,  磁共振成像,  生物学,  血流动力学,  诊断,  模型,  鉴别,  子宫肿瘤/诊断 
[[1]]   HORAK P, MARA M, DUNDR P, et al. Effect of a selective progesterone receptor modulator on induction of apoptosis in uterine fibroids in vivo[J]. Int J Endocrinol,2012,2012:436174.
[[2]]   DESHMUKH S P, GONSALVES C F, GUGLIELMO F F, et al. Role of MR imaging of uterine leiomyomas before and after embolization[J]. Radiographics,2012,32(6):E251-E281.
[[3]]   GUAN R, ZHENG W, XU M. A retrospective analysis of the clinicopathologic characteristics of uterine cellular leiomyomas in China[J]. Int J Gynaecol Obstet,2012,118(1):52-55.
[[4]]   舒莉,张文文,朱雪琼.子宫富于细胞型平滑肌瘤的研究进展[J].医学研究杂志,2013,42(10):18-21. SHU Li, ZHANG Wenwen, ZHU Xueqiong. Research progress of uterine cellular leiomyoma[J]. Journal of Medical Research,2013,42(10):18-21. (in Chinese)
[[5]]   YUAN A, LIN C Y, CHOU C H, et al. Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE-and SSCE-MRI[J/OL]. PLoS One,2011,6(1):e16062.
[[6]]   CÁRDENAS-RODRÍGUEZ J, HOWISON C M, PAGEL M D. A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution[J]. Magn Reson Imaging,2013,31(4):497-507.
[[7]]   丁婕,朱蓉蓉,黄宁,等.动态对比增强不同时间分辨率下MRI线性参照模型和双室Tofts模型鉴别乳腺良、恶性病变的价值[J].中华放射学杂志,2015,49(11):828-832. DING Jie, ZHU Rongrong, HUANG Ning, et al. Linear reference region model and Tofts model in dynamic contrast-enhanced MRI of discriminating benign and malignant breast lesions comparative study[J]. Chinese Journal of Radiology,2015,49(11):828-832. (in Chinese)
[[8]]   赵飞飞,吕富荣,肖智博,等.动态增强MRI Reference region模型在子宫肌瘤中的初步应用[J].中国医学影像技术,2015,31(12):1861-1865. ZHAO Feifei, LYU Furong, XIAO Zhibo, et al. Preliminary study of dynamic contrast-enhanced MRI reference region model in uterine leiomyoma[J]. Medical Imaging Technology in China,2015,31(12):1861-1865. (in Chinese)
[[9]]   DONALDSON S B, WEST C M, DAVIDSON S E, et al. A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI:application in carcinoma of the cervix[J]. Magn Reson Med,2010,63(3):691-700.
[[10]]   陈加优,廖江,郑祥,等.富细胞性子宫平滑肌瘤MRI表现与病理对照分析[J].实用放射学杂志,2013,29(11):1803-1806. CHEN Jiayou, LIAO Jiang, ZHENG Xiang, et al. Comparative analysis between magnetic resonance imaging findings and pathological features of cellular uterine leiomyoma[J]. Journal of Practical Radiology,2013,29(11):1803-1806. (in Chinese)
[[11]]   YUN T J, PARK C K, KIM T M, et al. Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy:differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging[J]. Radiology,2015,274(3):830-840.
[1] YANG Rong, YAO Linpeng, ZHANG Siying, CHEN Feng. Rat endothelial progenitor cells labeled with Molday IONTM EverGreen and in vitro MRI study[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 481-486.
[2] LI Aijing, PAN Yuning, CHEN Bin, XIA Jianbi, GAN Fang, JIN Yinhua, ZHENG Jianjun. Association of parameters in dynamic contrast-enhanced MRI using reference region model with prognostic factors and molecular subtypes of breast cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 505-510.
[3] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 462-467.
[4] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 468-472.
[5] DONG Fei, LI Qian, JIANG Biao, ZENG Qiang, HUA Jianming, ZHANG Minming. Quantitative analysis of enhanced MRI features for predicting epidermal growth factor receptor gene amplification in glioblastoma multiforme with radiomic method[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 492-497.
[6] LAI Zhenzhen, ZHANG Sheng, ZHONG Genlong, ZHANG Xiaocheng, CHEN Qingmeng, LOU Min. Relationship between dynamic CT angiography-based collateral flow evaluation and outcome of patients with stroke induced by acute basilar artery occlusion[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 371-376.
[7] FANG Bing, QIAN Cong, JIANG Dingyao, XU Jing, YU Jun, CHEN Xianyi, XU Liang, CHEN Gao, ZHANG Jianmin. Hypoglossal canal dural arteriovenous fistulas treated with transvenous embolization:report of two cases and literature review[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 445-448.
[8] WEN Hong, CHEN Lu, YAN Kai, HE Jing. Prenatal diagnosis of Joubert syndrome:one case report and literature review[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 274-278.
[9] WU Han,WANG Zhongjin,MING Wenjie,WANG Shuang,DING Meiping. Monitoring time of interictal epileptiform discharges by long-term video EEG in patients with epilepsy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 30-35.
[10] HE Zhan, DING Fang, RONG Jiandong, GAN Yongli. A case of idiopathic hypertrophic cranial pachymeningitis presenting as chronic subdural hematoma[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 540-543.
[11] OU Changjiang, WANG Shenghu, CHEN Yili, MO Jun, ZHAO Xuequn. Microvascular decompression for hemifacial spasm induced by vertebral artery dissecting aneurysm: one case report[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 536-539.
[12] LU Junxiu, YANG Bingyan, CHEN Jingguo, XU Huanli, CHEN Haiyan. Effect of cerebral hemodynamic changes on white matter damage in premature infant with patent ductus arteriosus[J]. Journal of ZheJiang University(Medical Science), 2016, 45(3): 287-291.
[13] YAO Xiaochen, WANG Feng. The state of the art of imaging in gastroenteropancreatic neuroendocrine tumors[J]. Journal of ZheJiang University(Medical Science), 2016, 45(1): 51-55.
[14] SONG Rui-rui, YU Xin-feng, YERFAN·Jiaerken, SUN Jian-zhong, MAO Ying-ying, GUO Yang, CHEN Zhi-cai, ZHANG Min-ming. Cerebral lesions of DWI hyperintensity in patients with subacute stroke assessed by intravoxel incoherent motion technique[J]. Journal of ZheJiang University(Medical Science), 2015, 44(6): 632-637,644.
[15] XU Chao, CHEN Zhi-cai, TANG Huan, XU Meng-jun, ZHANG Sheng, SUN Jian-zhong, LOU Min. Signifiance of brush sign on susceptibility-weighted imaging predicts hemorrhagic transformation after intravenous thrombolysis in patients with acute ischemic stroke[J]. Journal of ZheJiang University(Medical Science), 2015, 44(6): 625-631.