Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (2): 179-185    DOI: 10.3785/j.issn.1008-9292.2017.04.10
    
Nicotinamide regulates blood glucose level and affects mitochondrial superoxide level in gestational diabetic rats
WANG Li(),WANG Yu,WU Haiying
Department of Obstetrics, Henan Province People's Hospital, Zhengzhou 450000, China
Download: HTML     PDF(1980KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate the effects of nicotinamide (NAM) on blood glucose level and anti-oxidative enzyme activity in gestational diabetic (GDM) rats. Methods: GDM model was induced by injection of STZ (35 mg/kg) in pregnant female Sprague-Dawley rats. Nicotinamide was given to GDM rats by gavage at 50, 100 or 200 mg/kg q.d from gestational d 6 to d 20. The rats were divided into normal control group, GDM group (0 mg/kg), low-dose NAM group (50 mg/kg), middle-dose NAM group (100 mg/kg) and high-dose NAM group (200 mg/kg) with 8 animals in each group. When rats were sacrificed at d 21, the blood glucose level was measured; skeletal muscle and fetal brain samples were collected. The expression and activity of anti-oxidative enzymes, including superoxide dismutase (SOD1, SOD2), catalase (CAT) and sirtuin-3 (SIRT3) were measured by RT-PCR and Western blot. Results: Nicotinamide significantly lowered the blood glucose in GDM rats and decreased mitochondrial superoxide level in the fetal cortical neurons. SOD2 was induced in skeletal muscle by nicotinamide in GDM rats (P<0.05), while no significant change was observed in the expression of CAT (P>0.05). Nicotinamide increased SIRT3 expression (P<0.05) and decreased deacetylation of SOD2 in skeletal muscle of GDM rats (P<0.05). Conclusion: Nicotinamide can lower the blood glucose level in GDM rats, and decrease mitochondrial superoxide level, which is associated with promoting SIRT3 activity to deacetylate SOD2 and elevate SOD2 activity in GDM rats.



Key wordsDiabetes, gestational/drug therapy      Niacinamide/padministration & dosage      Niacinamide/therapeutic use      Mitochondria      Superoxide dismutase/blood      Catalase/blood      Disease models, animal     
Received: 18 January 2017      Published: 31 October 2017
Cite this article:

WANG Li,WANG Yu,WU Haiying. Nicotinamide regulates blood glucose level and affects mitochondrial superoxide level in gestational diabetic rats. J Zhejiang Univ (Med Sci), 2017, 46(2): 179-185.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2017.04.10     OR     http://www.zjujournals.com/xueshu/med/Y2017/V46/I2/179


尼克酰胺降低妊娠期糖尿病大鼠的血糖水平以及调控线粒体超氧水平研究

目的:探讨尼克酰胺对妊娠期糖尿病的潜在治疗效果及其可能的抗氧化作用机制。方法:取妊娠第0天的9~11周龄雌性SD大鼠以链脲佐菌素35 mg/kg进行单次腹腔注射,构建妊娠期糖尿病大鼠模型;从妊娠第6天至第20天分别给予不同剂量(0、50、100、200 mg/kg)尼克酰胺灌胃。将大鼠分为无妊娠糖尿病的正常对照组、未给药的妊娠糖尿病对照组(0 mg/kg)和给尼克酰胺小(50 mg/kg)、中(100 mg/kg)、大(200 mg/kg)剂量各组,每组8只。在妊娠第21天检测各组大鼠空腹血糖。检测各组胎鼠脑组织和大鼠骨骼肌组织的线粒体超氧水平和抗氧化酶活性。分别应用实时荧光定量PCR和蛋白质印迹法检测各组骨骼肌组织超氧化物歧化酶(SOD1和SOD2)、过氧化氢酶(CAT)和线粒体去乙酰化酶(SIRT3)的表达量。结果:尼克酰胺各组血糖降低,其神经元线粒体超氧水平均低于糖尿病对照组(均P<0.05)。尼克酰胺各组骨骼肌组织中SOD2 mRNA/蛋白水平和活性均高于糖尿病对照组(均P<0.05),而组织中CAT的表达量和活性差异均无统计学意义(均P>0.05)。与糖尿病对照组比较,尼克酰胺各组SIRT3的表达均增加(均P<0.05),线粒体SOD2蛋白乙酰化水平均降低(均P<0.05)。结论:尼克酰胺降低妊娠糖尿病大鼠的空腹血糖水平,并可能通过促进SIRT3蛋白功能降低线粒体SOD2蛋白乙酰化水平、增强SOD2活性从而降低妊娠期糖尿病大鼠的线粒体超氧水平。


关键词: 糖尿病,妊娠/药物疗法,  烟酰胺/投药和剂量,  烟酰胺/治疗应用,  线粒体,  超氧化物歧化酶/血液,  过氧化氢酶/血液,  疾病模型,动物 
Fig 1 Confocal microscopy imaging of the mitochondrial superoxide anions labeled by MitoSOX in fetal neurons from Normal, GDM and GDM+NAM groups
Fig 2 The comparision of anti-oxidative enzymatic activity in skeletal muscle tissue of rats from Normal, GDM and GDM+NAM groups
Fig 3 The comparison of transcription levels of SOD2, SOD1, CAT and SIRT3 relative to GAPDH in skeletal muscle of rats from Normal, GDM and GDM+NAM groups
Fig 4 The SDS-PAGE results showing the expression levels of anti-oxidative enzymes and acetylated-SOD2 (SOD2-AcK) in the skeletal tissue of the rats from five groups
Fig 5 The quantitative analysis of SDS-PAGE results showing the expression levels of anti-oxidative enzymes and acetylated-SOD2 (SOD2-AcK) relative to GAPDH in the skeletal tissue of the rats from five groups
[1]   BOYLE K E , NEWSOM S A , JANSSEN R C et al. Skeletal muscle MnSOD, mitochondrial complex Ⅱ, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus[J]. J Clin Endocrinol Metab, 2013, 98 (10): E1601- E1609
doi: 10.1210/jc.2013-1943
[2]   CHENG X H , CHAPPLE S J , PATEL B et al. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero[J]. Diabetes, 2013, 62 (12): 4088- 4097
doi: 10.2337/db13-0169
[3]   JOHN C M , RAMASAMY R , AL NAQEEB G et al. Nicotinamide supplementation protects gestational diabetic rats by reducing oxidative stress and enhancing immune responses[J]. Curr Med Chem, 2012, 19 (30): 5181- 5186
doi: 10.2174/092986712803530449
[4]   LIOCHEV S I . Superoxide dismutase mimics, other mimics, antioxidants, prooxidants, and related matters[J]. Chem Res Toxicol, 2013, 26 (9): 1312- 1319
doi: 10.1021/tx4001623
[5]   OZDEN O , PARK S H , KIM H S et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress[J]. Aging (Albany NY), 2011, 3 (2): 102- 107
[6]   CHEN I C , CHIANG W F , LIU S Y et al. Role of SIRT3 in the regulation of redox balance during oral carcinogenesis[J]. Mol Cancer, 2013, 12 68-
doi: 10.1186/1476-4598-12-68
[7]   WEYDERT C J , CULLEN J J . Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue[J]. Nat Protoc, 2010, 5 (1): 51- 66
doi: 10.1038/nprot.2009.197
[8]   庄 璟怡 , 应 豪 , 王 德芬 . 小剂量链脲佐菌素建立妊娠期糖尿病大鼠模型的研究[J]. 现代妇产科进展, 2014, 23 (8): 607- 610
ZHUANG Jingyi , YING Hao , WANG Defen . A study on establishment of low-dose Streptozotocin-induced gestiational diabetics in rats[J]. Progress in Obstetrics and Gynecology, 2014, 23 (8): 607- 610
[9]   CADENAS E , DAVIES K J . Mitochondrial free radical generation, oxidative stress, and aging[J]. Free Radic Biol Med, 2000, 29 (3-4): 222- 230
doi: 10.1016/S0891-5849(00)00317-8
[10]   FOSTER W , MYLLYNEN P , WINN L M et al. Reactive oxygen species, diabetes and toxicity in the placenta-a workshop report[J]. Placenta, 2008, 29 Suppl A S105- S107
[11]   SHYMANS'KY I O , KUCHMEROV'SKA T M , DONCHENKO H V et al. Oxidative stress correction by nicotinamide and nicotynol-GABA in diabetic neuropathy[J]. Ukr Biokhim Zh(1999), 2002, 74 (5): 89- 95
[12]   BRESCIANI G , GONZáLEZ-GALLEGO J , DA CRUZ I B et al. The Ala16Val MnSOD gene polymorphism modulates oxidative response to exercise[J]. Clin Biochem, 2013, 46 (4-5): 335- 340
doi: 10.1016/j.clinbiochem.2012.11.020
[13]   TAO R , COLEMAN M C , PENNINGTON J D et al. Sirt3-Mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress[J]. Mole Cell, 2010, 40 (6): 893- 904
doi: 10.1016/j.molcel.2010.12.013
[14]   TAO R , VASSILOPOULOS A , PARISIADOU L et al. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis[J]. Antioxid Redox Signal, 2014, 20 (10): 1646- 1654
doi: 10.1089/ars.2013.5482
[15]   CANTó C , HOUTKOOPER R H , PIRINEN E et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity[J]. Cell metab, 2012, 15 (6): 838- 847
doi: 10.1016/j.cmet.2012.04.022
[1] ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy[J]. J Zhejiang Univ (Med Sci), 2017, 46(1): 92-96.
[2] ZHANG Chong, ZHOU Jia-Le, FANG Jie, ZHANG Da-Yong, WANG Bao-Ming, CHEN Rui-Ling, PAN Jian-Ping. TcpC induces apoptosis of human vascular endothelial cells and its mechanisms[J]. J Zhejiang Univ (Med Sci), 2013, 42(5): 492-497.
[3] JIANG Cui-Cui, XIA Man-Li, WANG Min, CHEN Shi-Piao. Dexmedetomidine preconditioning protects isolated rat hearts against ischemia/reperfusion injuries and its mechanism[J]. J Zhejiang Univ (Med Sci), 2013, 42(3): 326-330.
[4] . Role of mitochondrial calcium uniporter in cardioprotection induced by ischemic postconditioning in isolated rat heart[J]. J Zhejiang Univ (Med Sci), 2011, 40(3): 304-308.
[5] Dan Qinghong, Huang Yuanwei, Peng Zhangping, et al. ASSOCIATION OF LEVELS OF SERUM LIPIDS,LIPOPEROXIDE AND SUPEROXIDE DISMUTASE WITH THE SEVERITY OF CORONARY STENOSIS[J]. J Zhejiang Univ (Med Sci), 1996, 25(4): 151-153.