Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (1): 22-29    DOI: 10.3785/j.issn.1008-9292.2017.02.04
    
Temporal lobe epilepsy and adult hippocampal neurogenesis
CHEN Liying(),WANG Yi,CHEN Zhong()
College of Pharmacy, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML( 14 )   PDF(1038KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Temporal lobe epilepsy (TLE) is a common and severe neurological disorder which is often intractable. It can not only damage the normal structure and function of hippocampus, but also affect the neurogenesis in dentate gyrus (DG). It is well documented from researches on the animal models of TLE that after a latent period of several days, prolonged seizure activity leads to a dramatic increase in mitotic activity in the hippocampal DG. However, cell proliferation returns to baseline levels within 3-4 weeks after status epilepticus (SE). Meanwhile, there are two major abnormalities of DG neurogenesis, including the formation of hilar basal dendrites and the ectopic migration of newborn granule cells into the polymorphic cell layer, which may affect epileptogenesis and seizure onset. However, the specific contribution of these abnormalities to seizures is still unknown. In other words, whether they are anti-epileptic or pro-epileptic is still under heated discussion. This article systematically reviews current knowledge on neurogenesis and epilepsy based on the results of studies in recent years and discusses the possible roles of neurogenesis in epileptogenesis and pathologic mechanisms, so as to provide information for the potential application of neurogenesis as a new clinical therapeutic target for temporal lobe epilepsy.



Key wordsEpilepsy, temporal lobe/physiopathology      Dentate gyrus/pathology      Dentate gyrus/pathology/anatomy&histology      Status epilepticus      Neurons      Nerve regeneration      Disease models, animal      Review     
Received: 02 October 2016      Published: 07 July 2017
CLC:  R741.02  
  R742.1  
Corresponding Authors: CHEN Zhong     E-mail: chenliying0129@163.com;chenzhong@zju.edu.cn
About author: CHEN Zhong. E-mail: chenzhong@zju.edu.cn
Cite this article:

CHEN Liying,WANG Yi,CHEN Zhong. Temporal lobe epilepsy and adult hippocampal neurogenesis. J Zhejiang Univ (Med Sci), 2017, 46(1): 22-29.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2017.02.04     OR     http://www.zjujournals.com/med/Y2017/V46/I1/22


颞叶癫痫与海马成体神经再生

颞叶癫痫是一种严重的慢性中枢系统疾病,难治性比例非常高,它不仅会损害海马的结构功能,还会影响海马齿状回区的成体神经再生。颞叶癫痫模型研究表明,海马齿状回区的内源性神经干细胞在癫痫持续状态后会迅速激活,神经再生水平显著提高,而在癫痫发作后期(慢性期)神经元再生水平降低至正常水平以下;另外,癫痫持续状态后产生并分化成熟的颗粒细胞会存在异常的形态和位置,并有可能异常整合到海马神经环路并对癫痫的形成和发作产生影响。然而,癫痫后的成体神经再生对于癫痫是利是弊仍存在较大争议。本文对近年来颞叶癫痫后成体神经再生的数量、形态和功能的研究进展进行综述,讨论成体神经再生在癫痫形成和病理机制中扮演的角色,为日后临床上以成体神经再生作为癫痫治疗调控的新靶点研究提供借鉴。


关键词: 癫痫, 颞叶/病理生理学,  齿状回/病理学,  齿状回/解剖学和组织学,  癫痫持续状态,  神经元,  神经再生,  疾病模型, 动物,  综述 
Fig 1 Normal adult neurogenesis in the hippocampus and aberrant integration of adult-born neurons after status epilepticus
[1]   WOLF P . Pharmacoresistance in epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova. 2005, 105(12): 55-56
[2]   SUN Y, WANG X, WANG Z et al. Expression of microRNA-129-2-3p and microRNA-935 in plasma and brain tissue of human refractory epilepsy. Epilepsy Res. 2016, 127: 276-283 doi: 10.1016/j.eplepsyres.2016.09.016
doi: 10.1016/j.eplepsyres.2016.09.016 pmid: 27689807
[3]   SON A Y, BIAGIONI M C, KAMINSKI D et al. Parkinson's disease and cryptogenic epilepsy. Case Rep Neurol Med. 2016, 2016: 3745631
[4]   ALTMAN J . Are new neurons formed in the brains of adult mammals?. Science. 1962, 135(3509): 1127-1128 doi: 10.1126/science.135.3509.1127
[5]   CHRISTIAN K M, SONG H, MING G L . Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci. 2014, 37: 243-262 doi: 10.1146/annurev-neuro-071013-014134
doi: 10.1146/annurev-neuro-071013-014134 pmid: 24905596
[6]   DENG W, AIMONE J B, GAGE F H . New neurons and new memories:how does adult hippocampal neurogenesis affect learning and memory?. Nat Rev Neurosci. 2010, 11(5): 339-350 doi: 10.1038/nrn2822
doi: 10.1038/nrn2822 pmid: 20354534
[7]   SHAPIRO L A, KORN M J, RIBAK C E . Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience. 2005, 136(3): 823-831 doi: 10.1016/j.neuroscience.2005.03.059
doi: 10.1016/j.neuroscience.2005.03.059 pmid: 16344154
[8]   MYERS C E, BERMUDEZ-HERNANDEZ K, SCHARFMAN H E. The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function[J/OL][J/OL]. PLoS One, 2013, 8(6): e68208.
doi: 10.1371/journal.pone.0068208 pmid: 3695928
[9]   SCHMIDT-HIEBER C, JONAS P, BISCHOFBERGER J . Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004, 429(6988): 184-187 doi: 10.1038/nature02553
doi: 10.1038/nature02553 pmid: 15107864
[10]   ESPóSITO M S, PIATTI V C, LAPLAGNE D A et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci. 2005, 25(44): 10074-10086 doi: 10.1523/JNEUROSCI.3114-05.2005
doi: 10.1523/JNEUROSCI.3114-05.2005 pmid: 16267214
[11]   DREW L J, KHEIRBEK M A, LUNA V M et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus. 2016, 26(6): 763-778 doi: 10.1002/hipo.22557
doi: 10.1002/hipo.22557 pmid: 26662922
[12]   LACEFIELD C O, ITSKOV V, REARDON T et al. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus. 2012, 22(1): 106-116 doi: 10.1002/hipo.v22.1
doi: 10.1002/hipo.20860
[13]   PARENT J M, YU T W, LEIBOWITZ R T et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997, 17(10): 3727-3738
[14]   GRAY W P, SUNDSTROM L E . Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res. 1998, 790(1-2): 52-59 doi: 10.1016/S0006-8993(98)00030-4
doi: 10.1016/S0006-8993(98)00030-4 pmid: 9593820
[15]   MOHAPEL P, EKDAHL C T, LINDVALL O . Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol Dis. 2004, 15(2): 196-205 doi: 10.1016/j.nbd.2003.11.010
doi: 10.1016/j.nbd.2003.11.010 pmid: 15006689
[16]   YANG F, WANG J C, HAN J L et al. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus. 2008, 18(5): 460-468 doi: 10.1002/(ISSN)1098-1063
doi: 10.1002/hipo.20409 pmid: 18240317
[17]   BOTTERILL J J, BRYMER K J, CARUNCHO H J et al. Aberrant hippocampal neurogenesis after limbic kindling:relationship to BDNF and hippocampal-dependent memory. Epilepsy Behav. 2015, 47: 83-92 doi: 10.1016/j.yebeh.2015.04.046
doi: 10.1016/j.yebeh.2015.04.046 pmid: 25976182
[18]   JESSBERGER S, R?MER B, BABU H et al. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol. 2005, 196(2): 342-351 doi: 10.1016/j.expneurol.2005.08.010
doi: 10.1016/j.expneurol.2005.08.010 pmid: 16168988
[19]   BLüMCKE I, SCHEWE J C, NORMANN S et al. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus. 2001, 11(3): 311-321 doi: 10.1002/hipo.v11:3
doi: 10.1002/hipo.1045 pmid: 11769312
[20]   WASTERLAIN C G . Developmental brain damage after chemically induced epileptic seizures. Eur Neurol. 1975, 13(6): 495-498
[21]   SHI X Y, SUN R P, WANG J W . Consequences of pilocarpine-induced recurrent seizures in neonatal rats. Brain Dev. 2007, 29(3): 157-163 doi: 10.1016/j.braindev.2006.08.009
doi: 10.1016/j.braindev.2006.08.009 pmid: 17008043
[22]   LIU H, KAUR J, DASHTIPOUR K et al. Suppression of hippocampal neurogenesis is associated with developmental stage, number of perinatal seizure episodes, and glucocorticosteroid level. Exp Neurol. 2003, 184(1): 196-213 doi: 10.1016/S0014-4886(03)00207-3
doi: 10.1016/S0014-4886(03)00207-3 pmid: 14637092
[23]   HATTIANGADY B, RAO M S, SHETTY A K . Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis. 2004, 17(3): 473-490 doi: 10.1016/j.nbd.2004.08.008
doi: 10.1016/j.nbd.2004.08.008
[24]   SIERRA A, MARTíN-SUáREZ S, VALCáRCEL-MARTíN R et al. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell. 2015, 16(5): 488-503 doi: 10.1016/j.stem.2015.04.003
doi: 10.1016/j.stem.2015.04.003 pmid: 25957904
[25]   FUKUDA S, KATO F, TOZUKA Y et al. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci. 2003, 23(28): 9357-9366
[26]   SERI B, GARCíA-VERDUGO J M, MCEWEN B S et al. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001, 21(18): 7153-7160
[27]   SEGI-NISHIDA E, WARNER-SCHMIDT J L, DUMAN R S . Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci U S A. 2008, 105(32): 11352-11357 doi: 10.1073/pnas.0710858105
doi: 10.1073/pnas.0710858105 pmid: 18682560
[28]   BONAGUIDI M A, WHEELER M A, SHAPIRO J S et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell. 2011, 145(7): 1142-1155 doi: 10.1016/j.cell.2011.05.024
doi: 10.1016/j.cell.2011.05.024 pmid: 21664664
[29]   SIERRA A, ENCINAS J M, DEUDERO J J et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010, 7(4): 483-495 doi: 10.1016/j.stem.2010.08.014
doi: 10.1016/j.stem.2010.08.014 pmid: 20887954
[30]   STONE S S, TEIXEIRA C M, DEVITO L M et al. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci. 2011, 31(38): 13469-13484 doi: 10.1523/JNEUROSCI.3100-11.2011
doi: 10.1523/JNEUROSCI.3100-11.2011 pmid: 21940440
[31]   SULTAN S, GEBARA E G, MOULLEC K et al. D-serine increases adult hippocampal neurogenesis. Front Neurosci. 2013, 7: 155
[32]   PALMER T D, WILLHOITE A R, GAGE F H . Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000, 425(4): 479-494 doi: 10.1002/(ISSN)1096-9861
[33]   LIE D C, COLAMARINO S A, SONG H J et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005, 437(7063): 1370-1375 doi: 10.1038/nature04108
[34]   SONG H, STEVENS C F, GAGE F H . Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002, 417(6884): 39-44 doi: 10.1038/417039a
doi: 10.1038/417039a pmid: 11986659
[35]   SONG J, ZHONG C, BONAGUIDI M A et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature. 2012, 489(7414): 150-154 doi: 10.1038/nature11306
doi: 10.1038/nature11306
[36]   ZHAO C, TENG E M, SUMMERS R G et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006, 26(1): 3-11 doi: 10.1523/JNEUROSCI.3648-05.2006
doi: 10.1523/JNEUROSCI.3648-05.2006 pmid: 16399667
[37]   TONI N, TENG E M, BUSHONG E A et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci. 2007, 10(6): 727-734 doi: 10.1038/nn1908
doi: 10.1038/nn1908 pmid: 17486101
[38]   RAO M S, SHETTY A K . Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci. 2004, 19(2): 234-246 doi: 10.1111/ejn.2004.19.issue-2
[39]   SERESS L, RIBAK C E . Postnatal development of the light and electron microscopic features of basket cells in the hippocampal dentate gyrus of the rat. Anat Embryol (Berl). 1990, 181(6): 547-565
[40]   JESSBERGER S, ZHAO C, TONI N et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci. 2007, 27(35): 9400-9407 doi: 10.1523/JNEUROSCI.2002-07.2007
doi: 10.1523/JNEUROSCI.2002-07.2007 pmid: 17728453
[41]   SHAPIRO L A, RIBAK C E . Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res. 2006, 69(1): 53-66 doi: 10.1016/j.eplepsyres.2005.12.003
doi: 10.1016/j.eplepsyres.2005.12.003 pmid: 16480853
[42]   SHAPIRO L A, FIGUEROA-ARAGON S, RIBAK C E . Newly generated granule cells show rapid neuroplastic changes in the adult rat dentate gyrus during the first five days following pilocarpine-induced seizures. Eur J Neurosci. 2007, 26(3): 583-592 doi: 10.1111/j.1460-9568.2007.05662.x
doi: 10.1111/j.1460-9568.2007.05662.x pmid: 17686039
[43]   DASHTIPOUR K, TRAN P H, OKAZAKI M M et al. Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer. Brain Res. 2001, 890(2): 261-271 doi: 10.1016/S0006-8993(00)03119-X
doi: 10.1016/S0006-8993(00)03119-X pmid: 11164792
[44]   PIERCE J P, MELTON J, PUNSONI M et al. Mossy fibers are the primary source of afferent input to ectopic granule cells that are born after pilocarpine-induced seizures. Exp Neurol. 2005, 196(2): 316-331 doi: 10.1016/j.expneurol.2005.08.007
doi: 10.1016/j.expneurol.2005.08.007
[45]   WALTER C, MURPHY B L, PUN R Y et al. Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci. 2007, 27(28): 7541-7552 doi: 10.1523/JNEUROSCI.0431-07.2007
doi: 10.1523/JNEUROSCI.0431-07.2007 pmid: 17626215
[46]   MURPHY B L, PUN R Y, YIN H et al. Heterogeneous integration of adult-generated granule cells into the epileptic brain. J Neurosci. 2011, 31(1): 105-117 doi: 10.1523/JNEUROSCI.2728-10.2011
doi: 10.1523/JNEUROSCI.2728-10.2011
[47]   PARENT J M, ELLIOTT R C, PLEASURE S J et al. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol. 2006, 59(1): 81-91 doi: 10.1002/(ISSN)1531-8249
doi: 10.1002/ana.20699 pmid: 16261566
[48]   SCHARFMAN H E, SOLLAS A E, BERGER R E et al. Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience. 2003, 121(4): 1017-1029 doi: 10.1016/S0306-4522(03)00481-0
doi: 10.1016/S0306-4522(03)00481-0 pmid: 14580952
[49]   SCHARFMAN H E, SOLLAS A L, GOODMAN J H . Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience. 2002, 111(1): 71-81 doi: 10.1016/S0306-4522(01)00599-1
doi: 10.1016/S0306-4522(01)00599-1 pmid: 11955713
[50]   SCHARFMAN H E, GOODMAN J H, SOLLAS A L . Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells:functional implications of seizure-induced neurogenesis. J Neurosci. 2000, 20(16): 6144-6158
doi: 10.1016/S0006-3223(00)00914-8 pmid: 10934264
[51]   GONG C, WANG T W, HUANG H S et al. Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurosci. 2007, 27(8): 1803-1811 doi: 10.1523/JNEUROSCI.3111-06.2007
doi: 10.1523/JNEUROSCI.3111-06.2007 pmid: 17314278
[52]   LIU X, WANG Q, HAYDART F et al. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci. 2005, 8(9): 1179-1187 doi: 10.1038/nn1522
doi: 10.1038/nn1522 pmid: 16116450
[53]   SCHARFMAN H, GOODMAN J, MACLEOD A et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005, 192(2): 348-356 doi: 10.1016/j.expneurol.2004.11.016
doi: 10.1016/j.expneurol.2004.11.016 pmid: 15755552
[54]   OVERSTREET-WADICHE L S, BROMBERG D A, BENSEN A L et al. Seizures accelerate functional integration of adult-generated granule cells. J Neurosci. 2006, 26(15): 4095-4103 doi: 10.1523/JNEUROSCI.5508-05.2006
[55]   JUNG K H, CHU K, KIM M et al. Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci. 2004, 19(12): 3219-3226 doi: 10.1111/j.0953-816X.2004.03412.x
[56]   MORGAN R J, SOLTESZ I . Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A. 2008, 105(16): 6179-6184 doi: 10.1073/pnas.0801372105
[57]   PUN R Y, ROLLE I J, LASARGE C L et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron. 2012, 75(6): 1022-1034 doi: 10.1016/j.neuron.2012.08.002
doi: 10.1016/j.neuron.2012.08.002
[58]   CHO K O, LYBRAND Z R, ITO N et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun. 2015, 6: 6606 doi: 10.1038/ncomms7606
doi: 10.1038/ncomms7606 pmid: 25808087
[59]   RAEDT R, BOON P, PERSSON A et al. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia. 2007, 48(10): 1952-1963 doi: 10.1111/epi.2007.48.issue-10
doi: 10.1111/j.1528-1167.2007.01146.x pmid: 17555527
[60]   PEKCEC A, LVPKE M, BAUMANN R et al. Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression. Hippocampus. 2011, 21(8): 866-876
[1] FENG Mengyu, ZHANG Taiping, ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. J Zhejiang Univ (Med Sci), 2017, 46(6): 666-674.
[2] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 455-461.
[3] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 473-480.
[4] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 468-472.
[5] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 462-467.
[6] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. J Zhejiang Univ (Med Sci), 2017, 46(5): 563-569.
[7] LI Yandie, LU Meiping. Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 449-453.
[8] WANG Liya, QIAN Yeqing, JIN Fan. Research progress on the safety of offsprings conceived by assisted reproductive technology[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 279-284.
[9] YAN Kai, JIN Fan. Advances on prenatal diagnosis of birth defects associated with genetic disorders[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 227-232.
[10] TANG Minyue, ZHU Yimin. The involvement of galectin-1 in implantation and pregnancy maintenance at the maternal-fetal interface[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 321-327.
[11] FU Xiaohua, XU Weihai, QIU Shengchun, SHU Jing. Research progress on the relationship of brown adipose tissue with polycystic ovary syndrome[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 315-320.
[12] FU Yanling, ZHU Yimin. Potential clinical application of Kisspeptin in reproductive endocrinology[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 328-333.
[13] QIAN Yeqing, WANG Liya, LUO Yuqin, YAN Kai, DONG Minyue, JIN Fan. Advances in the application of high-throughput sequencing in clinical genetics[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 334-337.
[14] SHEN Dan, WANG Fangfang, JIANG Zhou, QU Fan. Long-term effects of polycystic ovary syndrome on the offspring[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 300-304.
[15] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. J Zhejiang Univ (Med Sci), 2017, 46(2): 218-224.