Please wait a minute...
J Zhejiang Univ (Med Sci)  2017, Vol. 46 Issue (1): 7-14    DOI: 10.3785/j.issn.1008-9292.2017.02.02
    
Effects of crocin on hippocampus rapid kindling epilepsy in mice
WANG Xiting1(),TANG Oufeng1,YE Yilu1,ZHENG Mingzhi1,HU Jue1,CHEN Zhong2,ZHONG Kai1,*()
(1) Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China
(2) Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML( 48 )   PDF(1151KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Objective

To investigate the effect of crocin on the progression and generalized seizure of temporal lobe epilepsy in mice.

Methods

Hippocampus rapid kindling model was established in C57BL/6J mice. The effects of crocin on seizure stage, afterdischarge duration (ADD), number of stimulation in each stage and final state, the incidence of generalized seizure (GS), average seizure stage and ADD were observed.

Results

Crocin (20 mg/kg) significantly retarded behavioral seizure stages (P < 0.05) and shortened cumulative ADD (P < 0.01) during hippocampus rapid kindling acquisition in mice compared with vehicle group. Meanwhile, number of stimulations in stage 1-2 was significantly increased (P < 0.05) and the incidence of fully kindled animals was significantly decreased (P < 0.01). However, 10 or 50 mg/kg crocin showed no significant effect on the above indexes (all P>0.05). Crocin (100 or 200 mg/kg) significantly decreased the incidence of GS (all P < 0.01) and reduced average seizure stages (all P < 0.01) in fully-kindled mice compared with vehicle group; Fifty mg/kg crocin only reduced average seizure stages (P < 0.05).

Conclusion

Low-dose crocin can retard the progression in hippocampus rapid kindling acquisition in mice, while high-dose crocin relieves the GS in fully-kindled mice, which suggests that crocin may be a potential anti-epileptic compound.



Key wordsEpilepsy, temporal lobe      PICROCROCIN/therapeutic use      PICROCROCIN/administration&dosage      Kndling, neurologic/drug effects      Dose-response relationship, drug      Disease models, animal     
Received: 02 October 2016      Published: 06 July 2017
CLC:  R742.1  
  R965  
Corresponding Authors: ZHONG Kai     E-mail: wangxt@hzm.edu.cn;zker12er@zju.edu.cn
About author: ZHONG Kai. E-mail: zker12er@zju.edu.cn
Cite this article:

WANG Xiting,TANG Oufeng,YE Yilu,ZHENG Mingzhi,HU Jue,CHEN Zhong,ZHONG Kai. Effects of crocin on hippocampus rapid kindling epilepsy in mice. J Zhejiang Univ (Med Sci), 2017, 46(1): 7-14.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2017.02.02     OR     http://www.zjujournals.com/med/Y2017/V46/I1/7


藏红花素对小鼠电点燃癫痫的影响

目的

观察藏红花素对小鼠颞叶癫痫形成过程和大发作的影响。

方法

利用C57小鼠海马电点燃癫痫模型,观察藏红花素对癫痫形成过程中的发作等级、累积后放电时间、在各等级停留的刺激次数、动物最终停留阶段等指标的影响,以及其对癫痫大发作动物的大发作概率、平均发作等级、后放电持续时间等指标的影响。

结果

与溶剂对照组比较,20 mg/kg藏红花素能抑制小鼠海马电点燃癫痫形成过程的每日平均发作等级(P < 0.05),缩短每日累积后放电持续时间(P < 0.01),同时延长癫痫在1~2级停留的刺激次数(P < 0.05),并降低小鼠完全点燃的比例(P < 0.01)。10或50 mg/kg藏红花素对上述指标均无明显影响(P>0.05)。对于已经完全点燃的动物,100或200 mg/kg藏红花素均能降低其大发作的概率(均P < 0.01),降低平均发作等级(均P < 0.01);50 mg/kg藏红花素则仅对平均发作等级有降低作用(P < 0.05)。

结论

藏红花素在小鼠海马电点燃模型中能抑制癫痫形成过程和癫痫大发作,其效果呈现一定的剂量依赖性,可能是一种有开发和应用前景的潜在抗癫痫药物。


关键词: 癫痫, 颞叶/中药疗法,  藏红花苦素/治疗应用,  藏红花苦素/投药和剂量,  点燃效应, 神经病学/药物作用,  剂量效应关系, 药物,  疾病模型, 动物 
Fig 1 Effects of crocin with various dosages on hippocampus rapid kindling acquisition in mice
Fig 2 Representative electroencephalograms of each group on hippocampus rapid kindling acquisition in mice
Fig 3 Effects of crocin with various dosage on number of stimulations and number of mice in different seizure states
($\overline {x}$±s)
组别n癫痫大发作概率 (%)癫痫发作等级后放电持续时间 (s)大发作持续时间 (s)
与溶剂对照组比较,*P<0.05,**P<0.01.
溶剂对照组696.74.85±0.1834.03±3.8523.35±4.75
阳性对照组615.0**2.28±0.75**23.13±5.7914.81±5.09*
藏红花素20 mg/kg组691.74.31±0.4035.42±8.8825.36±7.32
藏红花素50 mg/kg组673.34.04±0.74*28.30±6.2919.82±6.12
藏红花素100 mg/kg组655.0**3.48±0.47**28.98±7.2016.51±5.29
藏红花素200 mg/kg组660.0**3.58±0.37**35.65±6.3123.95±12.22
Tab 1 Antiepileptic effects of crocin with various dosage on generalized seizure
[1]   ELLIS T L, STEVENS A . Deep brain stimulation for medically refractory epilepsy. Neurosurg Focus. 2008, 25(3): E11 doi: 10.3171/FOC/2008/25/9/E11
doi: 10.3171/FOC/2008/25/9/E11 pmid: 18759612
[2]   SCHMIDT D, L?SCHER W . Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms. Epilepsia. 2005, 46(6): 858-877 doi: 10.1111/epi.2005.46.issue-6
doi: 10.1111/j.1528-1167.2005.54904.x pmid: 15946327
[3]   KWAN P, BRODIE M J . Early identification of refractory epilepsy. N Engl J Med. 2000, 342(5): 314-319 doi: 10.1056/NEJM200002033420503
[4]   BERG A T . Epilepsy:efficacy of epilepsy surgery:what are the questions today?. Nat Rev Neurol. 2011, 7(6): 311-312
[5]   SU J, ZHU W, LIU J et al. The involvement of neuronal nitric oxide synthase in antiepileptic action of alpha-asarone on pentylenetetrazol molding rats. Biomed Mater Eng. 2014, 24(6): 3645-3655
[6]   杨 宜承, 赵 薇, 曾 常茜 et al. 雷公藤内酯对海人酸致痫大鼠神经元caspase3和caspase9蛋白表达的影响. 辽宁中医药大学学报. 2013, 15(2): 48-50
YANG Yicheng, ZHAO Wei, ZENG Changqian et al. Effect of triptolide on hippocampal neuron in kainite-induced rat and expressions of caspase3 and caspase9. Journal of Liaoning University of Traditional Chinese Medicine. 2013, 15(2): 48-50
[7]   YE M, BI Y F, DING L et al. Saikosaponin a functions as anti-epileptic effect in pentylenetetrazol induced rats through inhibiting mTOR signaling pathway. Biomed Pharmacother. 2016, 81: 281-287 doi: 10.1016/j.biopha.2016.04.012
doi: 10.1016/j.biopha.2016.04.012 pmid: 27261605
[8]   ZOU X, HE Y, QIAO J et al. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. Toxicon. 2016, 109: 33-41 doi: 10.1016/j.toxicon.2015.11.005
doi: 10.1016/j.toxicon.2015.11.005 pmid: 26598793
[9]   喻 小红, 张 临洪, 张 端莲 . 川芎嗪对青霉素致痫大鼠神经元内神经细胞黏附分子-140表达的作用. 中国医院药学杂志. 2010, 30(8): 665-668
YU Xiaohong, ZHANG Linhong, ZHANG Duanlian . Effect of tetramethylpyrazine on NCAM-140 expression in the brain of rats with penicillin-induced epilepsy. Chinese Journal of Hospital Pharmacy. 2010, 30(8): 665-668
[10]   刘 正, 郭 凌鸿, 徐 昕红 et al. 西红花有效成分的神经药理学研究进展. 时珍国医国药. 2011, 22(5): 1202-1204
LIU Zheng, GUO Linghong, XU Xinhong et al. Advances in studies on neuropharmacology of Stigma Croci and its active constitutes. Lishizhen Medicine and Materia Medica Research. 2011, 22(5): 1202-1204
[11]   KAZI H A, QIAN Z . Crocetin reduces TNBS-induced experimental colitis in mice by downregulation of NFκB. Saudi J Gastroenterol. 2009, 15(3): 181-187 doi: 10.4103/1319-3767.54750
doi: 10.4103/1319-3767.54750 pmid: 2841418
[12]   MOUSAVI S H, TAVAKKOL-AFSHARI J, BROOK A et al. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol. 2009, 47(8): 1909-1913 doi: 10.1016/j.fct.2009.05.017
doi: 10.1016/j.fct.2009.05.017 pmid: 19457443
[13]   OCHIAI T, SHIMENO H, MISHIMA K et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta. 2007, 1770(4): 578-584 doi: 10.1016/j.bbagen.2006.11.012
doi: 10.1074/jbc.273.34.21435 pmid: 17215084
[14]   MASAKI M, ARITAKE K, TANAKA H et al. Crocin promotes non-rapid eye movement sleep in mice. Mol Nutr Food Res. 2012, 56(2): 304-308 doi: 10.1002/mnfr.201100181
doi: 10.1002/mnfr.201100181 pmid: 22038919
[15]   PITSIKAS N, ZISOPOULOU S, TARANTILIS P A et al. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats' memory. Behav Brain Res. 2007, 183(2): 141-146 doi: 10.1016/j.bbr.2007.06.001
doi: 10.1016/j.bbr.2007.06.001 pmid: 17628713
[16]   AHMAD A S, ANSARI M A, AHMAD M et al. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav. 2005, 81(4): 805-813 doi: 10.1016/j.pbb.2005.06.007
doi: 10.1016/j.pbb.2005.06.007 pmid: 16005057
[17]   HOSSEINZADEH H, TALEBZADEH F . Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia. 2005, 76(7-8): 722-724 doi: 10.1016/j.fitote.2005.07.008
doi: 10.1016/j.fitote.2005.07.008 pmid: 16253437
[18]   TAMADDONFARD E, HAMZEH G N, SEIEDNEJAD-YAMCHI S . Central effect of crocin on penicillin-induced epileptiform activity in rats. Pharmacol Rep. 2012, 64(1): 94-101 doi: 10.1016/S1734-1140(12)70735-1
[19]   ALAVIZADEH S H, HOSSEINZADEH H . Bioactivity assessment and toxicity of crocin:a comprehensive review. Food Chem Toxicol. 2014, 64: 65-80 doi: 10.1016/j.fct.2013.11.016
doi: 10.1016/j.fct.2013.11.016 pmid: 24275090
[20]   L?SCHER W . Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 2002, 50(1-2): 105-123 doi: 10.1016/S0920-1211(02)00073-6
[21]   陶 安风, 许 正浩, 吴 承昊 et al. 不同波形低频率电刺激对小鼠海马电点燃癫痫的作用比较. 浙江大学学报 (医学版). 2015, 44(3): 315-322
TAO Anfeng, XU Zhenghao, WU Chenghao et al. Antiepileptic effect of low-frequency electrical stimulation is waveform-dependent in hippocampal kindled mice. Journal of Zhejiang University (Medical Sciences). 2015, 44(3): 315-322
[22]   FRANKLIN K B J, PAXINOS G . The Mouse Brain in Stereotaxic Coordinates 2nd ed San Diego Academic Press 2001 1
[23]   JIN M, DAI Y, XU C et al. Effects of meclofenamic acid on limbic epileptogenesis in mice kindling models. Neurosci Lett. 2013, 543: 110-114 doi: 10.1016/j.neulet.2013.03.029
doi: 10.1016/j.neulet.2013.03.029 pmid: 23567745
[24]   RACINE R J . Modification of seizure activity by electrical stimulation. Ⅱ. motor seizure. Electroencephalogr Clin Neurophysiol. 1972, 32(3): 281-294 doi: 10.1016/0013-4694(72)90177-0
[25]   GARRIGA-CANUT M, SCHOENIKE B, QAZI R et al. 2-deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci. 2006, 9(11): 1382-1387 doi: 10.1038/nn1791
doi: 10.1038/nn1791 pmid: 17041593
[26]   ZHONG K, WU D C, JIN M M et al. Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats. Neurobiol Dis. 2012, 48(1): 20-26 doi: 10.1016/j.nbd.2012.05.011
doi: 10.1016/j.nbd.2012.05.011 pmid: 22659307
[27]   ALEXANDER A, MAROSO M, SOLTESZ I . Organization and control of epileptic circuits in temporal lobe epilepsy. Prog Brain Res. 2016, 226: 127-154 doi: 10.1016/bs.pbr.2016.04.007
doi: 10.1016/bs.pbr.2016.04.007 pmid: 27323941
[28]   REIBEL S, DEPAULIS A, LARMET Y . BDNF and epilepsy-the bad could turn out to be good. Trends Neurosci. 2001, 24(6): 318-319 doi: 10.1016/S0166-2236(00)01869-5
doi: 10.1016/S0166-2236(00)01869-5 pmid: 11421232
[29]   EFTEKHARI S, MEHRABI S, KARIMZADEH F et al. Brain derived neurotrophic factor modification of epileptiform burst discharges in a temporal lobe epilepsy model. Basic Clin Neurosci. 2016, 7(2): 115-120
[30]   CAI Z, LI S, LI S et al. Antagonist targeting microRNA-155 protects against lithium-pilocarpine-induced status epilepticus in C57BL/6 mice by activating brain-derived neurotrophic factor. Front Pharmacol. 2016, 7: 129
[31]   何 新康, 叶 夷露, 潘 蓓蓓 et al. 西红花素对大鼠脑缺血再灌注损伤的神经保护作用及神经行为学影响. 中国临床药理学与治疗学. 2016, 21(3): 282-286
HE Xinkang, YE Yilu, PAN Beibei et al. Effect of crocin on neural protection and neurobehavioral outcomes in rats after focal cerebral ischemia-reperfusion injury. Chinese Journal of Clinical Pharmacology and Therapeutics. 2016, 21(3): 282-286
[32]   陈 忠, 孙 红柳 . 星形胶质细胞在癫痫发病中的作用. 浙江大学学报 (医学版). 2013, 42(3): 245-252
CHEN Zhong, SUN Hongliu . Effect of astrocytes on of epilepsy epigenesis. Journal of Zhejiang University (Medical Sciences). 2013, 42(3): 245-252
No related articles found!