Please wait a minute...
Journal of ZheJiang University(Medical Science)  2016, Vol. 45 Issue (5): 550-557    DOI: 10.3785/j.issn.1008-9292.2016.09.16
    
Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response
WANG Xue, ZHANG Yuchuan, CHEN Wei
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
Download: HTML (   PDF(1952KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The innate immune response against viral infection is mainly relies on type I interferon, the production of which is mediated by TANK-binding kinase 1 (TBK1). It is revealed that the downstream TBK1 is activated by viral nucleic acid sensors RIG-I, cGAS and TLR3. The activity of TBK1 is complexly and precisely regulated by different type of protein modifications, including phosphorylation, ubiquitination and Sumolylation. This article focuses on the role of TBK1 in anti-viral innate immunity and the regulatory mechanism for the TBK1 activation.



Key wordsTANK-binding kinase 1/immunology      Viral infection      Interferon type I/immunology      Interferon regulatory factor-3      Review     
Received: 22 July 2016      Published: 25 September 2016
CLC:  R392  
Cite this article:

WANG Xue, ZHANG Yuchuan, CHEN Wei. Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response. Journal of ZheJiang University(Medical Science), 2016, 45(5): 550-557.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2016.09.16     OR     http://www.zjujournals.com/med/Y2016/V45/I5/550


TANK结合激酶1在抗病毒免疫应答中的作用研究进展

TANK结合激酶1(TBK1)是Ⅰ型干扰素合成过程中最为关键的蛋白激酶,在抗病毒固有免疫应答中发挥重要的作用。TBK1可以被RIG-I-MAVS、cGAS-STING和TLR3/4-TRIF抗病毒信号通路所活化,作为重要的节点蛋白,其活化受到磷酸化、泛素化、SUMO化等一系列机制复杂而精密的调控。本文对TBK1在抗病毒免疫应答中的作用及其调控机制的研究进展进行综述。


关键词: TANK结合激酶1/免疫学,  病毒感染,  干扰素Ⅰ型/免疫学,  干扰素调节因子3,  综述 
[[1]]   AKIRA S, UEMATSU S, TAKEUCHI O, et al.Pathogen recognition and innate immunity[J].Cell, 2006, 124(4):783-801.
[[2]]   PICHLMAIR A, REIS E SOUSA C.Innate recognition of viruses[J].Immunity, 2007, 27(3):370-383.
[[3]]   LIU S, CAI X, WU J, et al.Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J].Science, 2015, 347(6227):aaa2630.
[[4]]   LARABI A, DEVOS J M, NG S L, et al.Crystal structure and mechanism of activation of TANK-binding kinase 1[J].Cell Rep, 2013, 3(3):734-746.
[[5]]   RYZHAKOV G, RANDOW F.SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK[J].EMBO J, 2007, 26(13):3180-3190.
[[6]]   VERHELST K, VERSTREPEN L, CARPENTIER I, et al.IkappaB kinase epsilon (IKKepsilon):a therapeutic target in inflammation and cancer[J].Biochem Pharmacol, 2013, 85(7):873-880.
[[7]]   BARBIE D A, TAMAYO P, BOEHM J S, et al.Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1[J].Nature, 2009, 462(7269):108-112.
[[8]]   XIE X, ZHANG D, ZHAO B, et al.IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation[J].Proc Natl Acad Sci U S A, 2011, 108(16):6474-6479.
[[9]]   ZHAO W.Negative regulation of TBK1-mediated antiviral immunity[J].FEBS Lett, 2013, 587(6):542-548.
[[10]]   YU T, YI Y S, YANG Y, et al.The pivotal role of TBK1 in inflammatory responses mediated by macrophages[J].Mediators Inflamm, 2012, 2012:979105.
[[11]]   HAMMAKER D, BOYLE D L, FIRESTEIN G S.Synoviocyte innate immune responses:TANK-binding kinase-1 as a potential therapeutic target in rheumatoid arthritis[J].Rheumatology (Oxford), 2012, 51(4):610-618.
[[12]]   NAN Y, NAN G, ZHANG Y J.Interferon induction by RNA viruses and antagonism by viral pathogens[J].Viruses, 2014, 6(12):4999-5027.
[[13]]   GONCALVES A, BURCKSTUMMER T, DIXIT E, et al.Functional dissection of the TBK1 molecular network[J/OL].PLoS One, 2011, 6(9):e23971.
[[14]]   HEMMI H, TAKEUCHI O, SATO S, et al.The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection[J].J Exp Med, 2004, 199(12):1641-1650.
[[15]]   FITZGERALD K A, MCWHIRTER S M, FAIA K L, et al.IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway[J].Nat Immunol, 2003, 4(5):491-496.
[[16]]   CHIANG J J, DAVIS M E, GACK M U.Regulation of RIG-I-like receptor signaling by host and viral proteins[J].Cytokine Growth Factor Rev, 2014, 25(5):491-505.
[[17]]   WANG L, LI S, DORF M E.NEMO binds ubiquitinated TANK-binding kinase 1(TBK1) to regulate innate immune responses to RNA viruses[J/OL].PLoS One, 2012, 7(9):e43756.
[[18]]   GAO D, LI T, LI X D, et al.Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases[J].Proc Natl Acad Sci U S A, 2015, 112(42):E5699-5705.
[[19]]   SUN L, WU J, DU F, et al.Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J].Science, 2013, 339(6121):786-791.
[[20]]   ZHAO Y, LIANG L, FAN Y, et al.PPM1B negatively regulates antiviral response via dephosphorylating TBK1[J].Cell Signal, 2012, 24(11):2197-2204.
[[21]]   TU D, ZHU Z, ZHOU A Y, et al.Structure and ubiquitination-dependent activation of TANK-binding kinase 1[J].Cell Rep, 2013, 3(3):747-758.
[[22]]   SAUL V V, NIEDENTHAL R, PICH A, et al.SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity[J].Biochim Biophys Acta, 2015, 1853(1):136-143.
[[23]]   QIN Y, LIU Q, TIAN S, et al.TRIM9 short isoform preferentially promotes DNA and RNA virus-induced production of type I interferon by recruiting GSK3beta to TBK1[J].Cell Res, 2016, 26(5):613-628.
[[24]]   MCCOY C E, CARPENTER S, PÅLSSON-MCDERMOTT E M, et al.Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like receptor-3 and-4 by targeting TBK1 activation[J].J Biol Chem, 2008, 283(21):14277-14285.
[[25]]   WANG C, CHEN T, ZHANG J, et al.The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon[J].Nat Immunol, 2009, 10(7):744-752.
[[26]]   MIZUSHIMA N, YOSHIMORI T, OHSUMI Y.The role of Atg proteins in autophagosome formation[J].Annu Rev Cell Dev Biol, 2011, 27:107-132.
[[27]]   ZHANG L, ZHAO X, ZHANG M, et al.Ubiquitin-specific protease 2b negatively regulates IFN-beta production and antiviral activity by targeting TANK-binding kinase 1[J].J Immunol, 2014, 193(5):2230-2237.
[[28]]   CUI J, LI Y, ZHU L, et al.NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4[J].Nat Immunol, 2012, 13(4):387-395.
[[29]]   NG M H, HO T H, KOK K H, et al.MIP-T3 is a negative regulator of innate type I IFN response[J].J Immunol, 2011, 187(12):6473-6482.
[[30]]   HUANG J, LIU T, XU L G, et al.SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3-and virus-triggered IRF-3 activation pathways[J].EMBO J, 2005, 24(23):4018-4028.
[[31]]   ZHANG L, MO J, SWANSON K V, et al.NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING[J].Immunity, 2014, 40(3):329-341.
[1] FENG Mengyu,ZHANG Taiping,ZHAO Yupei. Present situation and prospect of enhanced recovery after surgery in pancreatic surgery[J]. Journal of ZheJiang University(Medical Science), 2017, 46(6): 666-674.
[2] XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 455-461.
[3] PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 473-480.
[4] ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 468-472.
[5] PAN Yao, CHEN Jieyu, YU Risheng. Accurate imaging diagnosis and evaluation of pancreatic cancer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 462-467.
[6] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 563-569.
[7] LI Yandie, LU Meiping. Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 449-453.
[8] WANG Liya, QIAN Yeqing, JIN Fan. Research progress on the safety of offsprings conceived by assisted reproductive technology[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 279-284.
[9] YAN Kai, JIN Fan. Advances on prenatal diagnosis of birth defects associated with genetic disorders[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 227-232.
[10] TANG Minyue, ZHU Yimin. The involvement of galectin-1 in implantation and pregnancy maintenance at the maternal-fetal interface[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 321-327.
[11] FU Xiaohua, XU Weihai, QIU Shengchun, SHU Jing. Research progress on the relationship of brown adipose tissue with polycystic ovary syndrome[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 315-320.
[12] FU Yanling, ZHU Yimin. Potential clinical application of Kisspeptin in reproductive endocrinology[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 328-333.
[13] QIAN Yeqing, WANG Liya, LUO Yuqin, YAN Kai, DONG Minyue, JIN Fan. Advances in the application of high-throughput sequencing in clinical genetics[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 334-337.
[14] SHEN Dan, WANG Fangfang, JIANG Zhou, QU Fan. Long-term effects of polycystic ovary syndrome on the offspring[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 300-304.
[15] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. Journal of ZheJiang University(Medical Science), 2017, 46(2): 218-224.