Please wait a minute...
Journal of ZheJiang University(Medical Science)  2016, Vol. 45 Issue (4): 439-445    DOI: 10.3785/j.issn.1008-9292.2016.07.17
Research progress on the role of epithelial-mesenchymal transition in pathogenesis of endometriosis
ZHU Tianhong, ZHANG Xinmei
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
Download:   PDF(953KB)
Export: BibTeX | EndNote (RIS)      


Epithelial-mesenchymal transition plays an important role in the development and progression of endometriosis. Mesenchymal-epithelial transition is involved in forming localized lesions of endometriosis, while EMT is involved in the injury, repair and fibrosis induced by local inflammation of endometriosis and the process of cell invasion and metastasis. The studies of signal transduction pathway and related proteins of epithelial-mesenchymal transition in the process of endometriosis may provide new targets for diagnosis and treatment of endometriosis.

Key wordsEndometriosis/physiopathology      Epithelial cells/pathology      Mesoderm/pathology      Review     
Received: 08 April 2016     
CLC:  R711.71  
Cite this article:

ZHU Tianhong, ZHANG Xinmei. Research progress on the role of epithelial-mesenchymal transition in pathogenesis of endometriosis. Journal of ZheJiang University(Medical Science), 2016, 45(4): 439-445.

URL:     OR



关键词: 子宫内膜异位症/病理生理学,  上皮细胞/病理学,  中胚层/病理学,  综述 
[[1]]   NOTHNICK W B. Endometriosis: bright future for a cloudy past?[J]. Sci Transl Med, 2015, 7(271):271fs2.
[[2]]   BOYER B, VALLÉS A M, EDME N. Induction and regulation of epithelial-mesenchymal transitions[J]. Biochem Pharmacol, 2000, 60(8):1091-1099.
[[3]]   PROESTLING K, BIRNER P, GAMPERL S, et al. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis[J]. Reprod Biol Endocrinol, 2015, 13:75.
[[4]]   THIERY J P. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer, 2002, 2(6):442-454.
[[5]]   ZEITVOGEL A, BAUMANN R, STARZINSKI-POWITZ A. Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model[J]. Am J Pathol, 2001, 159(5):1839-1852.
[[6]]   GAETJE R, KOTZIAN S, HERRMANN G, et al. Nonmalignant epithelial cells, potentially invasive in human endometriosis, lack the tumor suppressor molecule E-cadherin[J]. Am J Pathol, 1997, 150(2):461-467.
[[7]]   LOGAN C Y, NUSSE R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol, 2004, 20:781-810.
[[8]]   GONZÁLEZ-RAMOS R, VAN LANGENDONCKT A, DEFRÉRE S, et al. Involvement of the nuclear factor-kappaB pathway in the pathogenesis of endometriosis[J]. Fertil Steril, 2010, 94(6):1985-1994.
[[9]]   ZHANG Q, DUAN J, OLSON M, et al. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in Baboons[J]. Reprod Sci, 2016, 23(10):1409-1421.
[[10]]   QI S, ZHAO X, LI M, et al. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis[J]. Reprod Biol Endocrinol, 2015, 13:96.
[[11]]   KHAN K N, KITAJIMA M, HIRAKI K, et al. Involvement of hepatocyte growth factor-induced epithelial-mesenchymal transition in human adenomyosis[J]. Biol Reprod, 2015, 92(2):35.
[[12]]   VINATIER D, COSSON M, DUFOUR P. Is endometriosis an endometrial disease?[J]. Eur J Obstet Gynecol Reprod Biol, 2000, 91(2):113-125.
[[13]]   DJOKOVIC D, CALHAZ-JORGE C. Somatic stem cells and their dysfunction in endometriosis[J]. Front Surg, 2014, 1:51.
[[14]]   MATSUZAKI S, DARCHA C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis[J]. Hum Reprod, 2012, 27(3):712-721.
[[15]]   LINDSLEY R C, GILL J G, KYBA M, et al. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm[J]. Development, 2006, 133(19):3787-3796.
[[16]]   TULAC S, NAYAK N R, KAO L C, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium[J]. J Clin Endocrinol Metab, 2003, 88(8):3860-3866.
[[17]]   BRUEGGMANN D, JAQUE J M, LEE A W, et al. Expression of Wnt signaling pathway genes in human endometriosis tissue:a pilot study[J]. Eur J Obstet Gynecol Reprod Biol, 2016, 199:214-215.
[[18]]   ZHANG L, XIONG W, XIONG Y, et al. 17β-Estradiol promotes vascular endothelial growth factor expression via the Wnt/beta-catenin pathway during the pathogenesis of endometriosis[J]. Mol Hum Reprod, 2016, 22(7):526-535.
[[19]]   MATSUZAKI S, DARCHA C. Involvement of the Wnt/beta-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis[J/OL]. Plos One, 2013, 8(10):e76808.
[[20]]   ZHANG X, GASPARD J P, CHUNG D C. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia[J]. Cancer Res, 2001, 61(16):6050-6054.
[[21]]   SHTUTMAN M, ZHURINSKY J, SIMCHA I, et al. The CyclinD1 gene is a target of the beta-catenin/LEF-1 pathway[J]. Proc Natl Acad Sci U S A, 1999, 96(10):5522-5527.
[[22]]   BRABLETZ T, JUNG A, DAG S, et al. beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer[J]. Am J Pathol, 1999, 155(4):1033-1038.
[[23]]   HE T C, SPARKS A B, RAGO C, et al. Identification of c-MYC as a target of the APC pathway[J]. Science, 1998, 281(5382):1509-1512.
[[24]]   SEN R, BALTIMORE D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell, 1986, 46(5):705-716.
[[25]]   MAY M J, GHOSH S. Signal transduction through NF-kappa B[J]. Immunol Today, 1998, 19(2):80-88.
[[26]]   LOUSSE J C, VAN LANGENDONCKT A, GONZÁLEZ-RAMOS R, et al. Increased activation of nuclear factor-kappa B (NF-kappaB) in isolated peritoneal macrophages of patients with endometriosis[J]. Fertil Steril, 2008, 90(1):217-220.
[[27]]   GONZÁLEZ-RAMOS R, DONNEZ J, DEFRÉRE S, et al. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis[J]. Mol Hum Reprod, 2007, 13(7):503-509.
[[28]]   IWABE T, HARADA T, TSUDO T, et al. Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis[J]. Fertil Steril, 1998, 69(5):924-930.
[[29]]   HARADA T, YOSHIOKA H, YOSHIDA S, et al. Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis[J]. Am J Obstet Gynecol, 1997, 176(3):593-597.
[[30]]   GUO S W. Nuclear factor-kappab (NF-kappaB):an unsuspected major culprit in the pathogenesis of endometriosis that is still at large?[J]. Gynecol Obstet Invest, 2007, 63(2):71-97.
[[31]]   SOTNIKOVA N Y, ANTSIFEROVA Y S, POSISEEVA L V, et al. Mechanisms regulating invasiveness and growth of endometriosis lesions in rat experimental model and in humans[J]. Fertil Steril, 2010, 93(8):2701-2705.
[[32]]   PROTOPAPAS A, MARKAKI S, MITSIS T, et al. Immunohistochemical expression of matrix metalloproteinases, their tissue inhibitors, and cathepsin-D in ovarian endometriosis:correlation with severity of disease[J]. Fertil Steril, 2010, 94(6):2470-2472.
[[33]]   DI CARLO C, BONIFACIO M, TOMMASELLI G A, et al. Metalloproteinases, vascular endothelial growth factor, and angiopoietin 1 and 2 in eutopic and ectopic endometrium[J]. Fertil Steril, 2009, 91(6):2315-2323.
[[34]]   DENG J, MILLER S A, WANG H Y, et al. β-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer[J]. Cancer Cell, 2002, 2(4):323-334.
[[35]]   ZHANG H, ZHAO X, LIU S, et al. 17βE2 promotes cell proliferation in endometriosis by decreasing PTEN via NFkappaB-dependent pathway[J]. Mol Cell Endocrinol, 2010, 31(1-2):31-43.
[[36]]   HUBER M A, BEUG H, WIRTH T. Epithelial-mesenchymal transition:NF-kappaB takes center stage[J]. Cell Cycle, 2004, 3(12):1477-1480.
[[37]]   GAZVANI R, TEMPLETON A. Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis[J]. Reproduction, 2002, 123(2):217-226.
[[38]]   SHEN M, LIU X, ZHANG H, et al. Transforming growth factor beta1 signaling coincides with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice[J]. Hum Reprod, 2016, 31(2):355-369.
[[39]]   WHEELOCK M J, JOHNSON K R. Cadherins as modulators of cellular phenotype[J]. Annu Rev Cell Dev Biol, 2003, 19:207-235.
[[40]]   THIERY J P, ACLOQUE H, HUANG R Y, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890.
[[41]]   YANG J, MANI S A, DONAHER J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004, 117(7):927-939.
[[42]]   BARTLEY J, JULICHER A, HOTZ B, et al. Epithelial to mesenchymal transition (EMT) seems to be regulated differently in endometriosis and the endometrium[J]. Arch Gynecol Obstet, 2014, 289(4):871-881.
[[43]]   AU H K, CHANG J H, WU Y C, et al. TGF-betaI regulates cell migration through pluripotent transcription factor OCT4 in endometriosis[J/OL]. PLoS One, 2015, 10(12):e0145256.
[[44]]   CHEN Y J, LI H Y, HUANG C H, et al. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis[J]. J Pathol, 2010, 222(3):261-270.
[[45]]   ZHAO M, TANG Q, WU W, et al. miR-20a contributes to endometriosis by regulating NTN4 expression[J]. Mol Biol Rep, 2014, 41(9):5793-5797.
[[46]]   ADAMMEK M, GREVE B, KÄSSENS N, et al. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors[J]. Fertil Steril, 2013, 99(5):1346-1355.e5.
[[47]]   KÄSTINGSCHÄFER C S, SCHÄFER S D, KIESEL L, et al. miR-142-3p is a novel regulator of cell viability and proinflammatory signalling in endometrial stroma cells[J]. Reprod Biomed Online, 2015, 30(5):553-556.
[[48]]   PARK S M, GAUR A B, LENGYEL E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev, 2008, 22(7):894-907.
[[49]]   EGGERS J C, MARTINO V, REINBOLD R, et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4[J]. Reprod Biomed Online, 2016, 32(4):434-445.
[[50]]   REKKER K, SAARE M, ROOST A M, et al. Circulating miR-200-family micro-RNAs have altered plasma levels in patients with endometriosis and vary with blood collection time[J]. Fertil Steril, 2015, 104(4):938-946.e2.
[[51]]   LANDSKRON G, DE LA FUENTE M, THUWAJIT P, et al. Chronic inflammation and cytokines in the tumor microenvironment[J]. J Immunol Res, 2014, 2014:149185.
[[52]]   LAIRD S M, TUCKERMAN E M, CORK B A, et al. Expression of nuclear factor kappa B in human endometrium; role in the control of interleukin 6 and leukaemia inhibitory factor production[J]. Mol Hum Reprod, 2000, 6(1):34-40.
[[53]]   HERZIG M, SAVARESE F, NOVATCHKOVA M, et al. Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling[J]. Oncogene, 2007, 26(16):2290-2298.
[1] GAO Siqian,SHEN Yongmei,GENG Funeng,Yanhua LI,Jianqing GAO. Temporal lobe epilepsy and adult hippocampal neurogenesis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 97-105.
[2] WANG Ying,WANG Yi,CHEN Zhong. The role of central cholinergic system in epilepsy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 15-21.
[3] GAO Siqian,SHEN Yongmei,GENG Funeng,LI Yanhua,GAO Jianqing. Research progress on the animal models and treatment strategies of diabetic foot ulcer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 97-105.
[4] LI Wenlong,QU Haibin. Application progress on near infrared spectroscopy in quality control and process monitoring of traditional Chinese medicine[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 80-88.
[5] ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 92-96.
[6] FENG Sheng, CHEN Jijun, ZHENG Yichun. Research progress on the effect of glucocorticoid receptor signaling pathways in bladder cancer[J]. Journal of ZheJiang University(Medical Science), 2016, 45(6): 655-660.
[7] LI Tongyu, LIANG Ping. Research progress on disease models and gene therapy of Duchenne muscular dystrophy[J]. Journal of ZheJiang University(Medical Science), 2016, 45(6): 648-654.
[8] CAO Peng, LENG Dongjin, LI Ying, ZHANG Ziwei, LIU Lei, LI Xiaoyan. Progress on anti-tumor molecular mechanisms of dihydroartemisinin[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 501-507.
[9] LI Tingting, KE Yuehai, CHENG Hongqiang. Reasearch progress on the role of neutrophils in asthma[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 544-549.
[10] WANG Xue, ZHANG Yuchuan, CHEN Wei. Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 550-557.
[11] DU Miaomiao, MA Gaigai, SHI Yuping. Research progress on pharmacotherapy of calcific aortic valve disease[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 432-438.
[12] HE Bin, CHAI Yanlan, WANG Tao, ZHOU Zhenxing, LIU Zi. Progress on clinical application of bevacizumab for the treatment of refractory cervical cancer[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 395-402.
[13] LI Xueying, ZHU Lixia, YE Xiujin. Aberrant DNA methylation and its targeted therapy in acute myeloid leukemia[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 387-394.
[14] XU Yulan, XUE Yadan, KANG Lijun. The effect of glial cells in the function and development of the nervous system in Caenorhabditis elegans[J]. Journal of ZheJiang University(Medical Science), 2016, 45(3): 315-322.
[15] SHEN Yinzhong, LU Hongzhou. Pre-exposure prophylaxis for HIV: clinical practice and challenge[J]. Journal of ZheJiang University(Medical Science), 2016, 45(3): 221-227.