Please wait a minute...
Journal of ZheJiang University(Medical Science)  2016, Vol. 45 Issue (3): 249-255    DOI: 10.3785/j.issn.1008-9292.2016.05.05
    
Advances of immunological pathogenesis research in HIV related neurocognitive disorder
JI Yongjia1, LU Hongzhou1,2
1. Department of Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, China;
2. Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
Download:   PDF(980KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

With extended life of HIV-infected patients due to highly active anti-retroviral therapy (HAART), the rate of HIV associated neurocognitive disorder (HAND) remains high and attracts much attention. The evidence is clear that cytokines are elevated in the blood of patients with HIV infection, which contribute to elevating the permeability of blood-brain barrier. Benefiting from that, cells in the brain are infected with HIV that has accelerated through the blood-brain barrier both as cell-free virus and infected immune cells including monocytes and T cells. Upon migration into the central nervous system, HIV-infected monocytes and T cells not only infect brain resident cells but also produce proinflammatory cytokines such as TNF and IL-1ß, which further activate microglia and astrocytes. These activated brain glial cells and perivascular macrophages, which release inflammatory mediators, are the main contributors to neuroinflammation resulting in neuronal dysfunction. The pathogenesis of HAND is multifaceted, however, mounting evidence indicates that HIV related neuroinflammation plays a major role, which should be the focus of therapeutic research for HAND in future.



Key wordsHIV infections/complications      Cognition disorders/etiology      Cognition disorders/physiopathology      Cognition disorders/physiopathology      Nervous system/physiopathology      Immunity      Review     
Received: 11 January 2016     
CLC:  R512.91  
Cite this article:

JI Yongjia, LU Hongzhou. Advances of immunological pathogenesis research in HIV related neurocognitive disorder. Journal of ZheJiang University(Medical Science), 2016, 45(3): 249-255.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2016.05.05     OR     http://www.zjujournals.com/xueshu/med/Y2016/V45/I3/249


人类免疫缺陷病毒感染相关神经认知功能障碍的免疫学发病机制研究进展

随着HIV感染者接受高效抗逆转录病毒治疗后生存时间延长,HIV感染相关神经认知功能障碍(HAND)引起广泛关注。研究证据表明,HIV感染过程中各种细胞因子上调,导致血脑屏障通透性上升。受益于此,外周游离HIV病毒以及被HIV感染的免疫细胞(单核/巨噬细胞、T淋巴细胞)可加速穿越血脑屏障进入中枢神经系统,并导致中枢神经细胞感染HIV。此外,HIV感染的单核/巨噬细胞或T淋巴细胞进入中枢系统后还分泌多种促炎性细胞因子如TNF、IL-1ß等激活小胶质细胞以及星形胶质细胞。脑胶质细胞被激活后与血管周围外来巨噬细胞等免疫细胞共同作用分泌炎症介质,导致HIV感染相关中枢神经系统炎症以及神经功能损伤。HAND发病尽管受多种因素影响,但越来越多证据表明,HIV相关神经炎症反应是导致HIV感染者出现神经认知功能以及行为异常最重要的原因,未来应当围绕于此进行HAND相关治疗研究。本文就近年来HAND免疫发病机制相关研究进展做一综述。


关键词: HIV感染/并发症,  认知障碍/病因学,  认知障碍/病理生理学,  神经系统/病理生理学,  免疫,  综述 
[[1]]   HONG S, BANKS W A. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications[J]. Brain Behav Immun, 2015, 45:1-12.
[[2]]   MIND EXCHANGE WORKING GROUP. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program[J]. Clin Infect Dis, 2013, 56(7): 1004-1017.
[[3]]   RAPPAPORT J, VOLSKY D J. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment[J]. J Neurovirol, 2015, 21(3): 235-241.
[[4]]   GRAUER O M, REICHELT D, GRVNEBERG U, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid[J]. Ann Clin Transl Neurol, 2015, 2(9): 906-919.
[[5]]   BURDO T H, LACKNER A, WILLIAMS K C. Monocyte/macrophages and their role in HIV neuropathogenesis[J]. Immunol Rev, 2013, 254(1): 102-113.
[[6]]   BONNAN M, BARROSO B, DEMASLES S, et al. Compartmentalized intrathecal immunoglobulin synthesis during HIV infection-a model of chronic CNS inflammation?[J]. J Neuroimmunol, 2015, 285:41-52.
[[7]]   DOHGU S, BANKS W. Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk[J]. Fluids Barriers CNS, 2013, 10(1): 23.
[[8]]   BARUCH K, SCHWARTZ M. CNS-specific T cells shape brain function via the choroid plexus[J]. Brain Behav Immu, 2013, 34:11-16.
[[9]]   FISCHER-SMITH T, CROUL S, SVERSTIUK A E, et al. CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection[J]. J Neurovirol, 2001, 7(6): 528-541.
[[10]]   WILLIAMS R, DHILLON N K, HEGDE S T, et al. Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes[J]. Glia, 2009, 57(7): 734-743.
[[11]]   WILLIAMS D W, EUGENIN E A, CALDERON T M, et al. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis[J]. J Leukoc Biol, 2012, 91(3): 401-415.
[[12]]   CHAN P, BREW B J. HIV associated neurocognitive disorders in the modern antiviral treatment era: prevalence, characteristics, biomarkers, and effects of treatment[J]. Curr HIV/AIDS Rep, 2014,11(3): 317-324.
[[13]]   PEREYRA F, PALMER S, MIURA T. et al. Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters[J]. J Infect Dis, 2009, 200(6): 984-990.
[[14]]   CRIBBS S K, LENNOX J, CALIENDO A M, et al. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages[J]. AIDS Res Hum Retroviruses, 2015, 31(1): 64-70.
[[15]]   THOMPSON K A, CHERRY C L, BELL J E, et al. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals[J]. Am J Pathol, 2011, 179(4): 1623-1629.
[[16]]   TAVAZZI E, MORRISON D, SULLIVAN P, et al. Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection[J]. Curr HIV Res, 2014, 12(2): 97-110.
[[17]]   MCGUIRE J L, GILL A J, DOUGLAS S D, et al. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders[J]. J Neurovirol, 2015, 21(4): 439-448.
[[18]]   BROWN A. Understanding the MIND phenotype: macrophage/microglia inflammation in neurocognitive disorders related to human immunodeficiency virus infection[J]. Clin Transl Med, 2015, 4:7.
[[19]]   BROWN J N, KOHLER J J, COBERLEY C R, et al. HIV-1 activates macrophages independent of Toll-like receptors[J/OL]. PLoS One, 2008, 3(12): e3664.
[[20]]   HUANG X, STONE D K, YU F, et al. Functional proteomic analysis for regulatory T cell surveillance of the HIV-1-infected macrophage[J]. J Proteome Res, 2010, 9(12): 6759-6773.
[[21]]   WANG Z, ZHENG Y, LIU L, et al. High prevalence of HIV-associated neurocognitive disorder in HIV-infected patients with a baseline CD4 count ≤350 cells/μL in Shanghai, China[J]. Biosci Trends, 2013, 7(6): 284-289.
[[22]]   SHAN L, DENG K, SHROFF N S, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation[J]. Immunity, 2012, 36(3): 491-501.
[[23]]   HORNIK A, RODRIGUEZ-PORCEL F, WALLERY S, et al. Late onset CNS immune reconstitution inflammatory syndrome in an immunocompetent patient[J]. Front Neurol, 2013, 4:12.
[[24]]   GRAY F, LESCURE F X, ADLE-BIASSETTE H, et al. Encephalitis with infiltration by CD8+lymphocytes in HIV patients receiving combination antiretroviral treatment[J]. Brain Pathol, 2013, 23(5): 525-533.
[[25]]   EVERALL I, VAIDA F, KHANLOU N, et al. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy[J]. J Neurovirol, 2009, 15(5-6): 360-370.
[[26]]   ANTHONY I C, BELL J E. The neuropathology of HIV/AIDS[J]. Int Rev Psychiatry, 2008, 20(1): 15-24.
[[27]]   WALSH J G, REINKE S N, MAMIK M K, et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS[J]. Retrovirology, 2014, 11:35.
[[28]]   HUANG Y, ZHAO L, JIA B, et al. Glutaminase dysregulation in HIV-1-infected human microglia mediates neurotoxicity: relevant to HIV-1-associated neurocognitive disorders[J]. J Neurosci, 2011, 31(42): 15195-15204.
[[29]]   GUILLEMIN G J, KERR S J, BREW B J. Involvement of quinolinic acid in AIDS dementia complex[J]. Neurotox Res, 2005, 7(1-2): 103-123.
[[30]]   MEUCCI O, FATATIS A, SIMEN A A, et al. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival[J]. Proc Natl Acad Sci U S A, 2000, 97(14): 8075-8080.
[[31]]   MURATORI C, MANGINO G, AFFABRIS E, et al. Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNFα in macrophages[J]. Glia, 2010, 58(16): 1893-1904.
[[32]]   BEZZI P, DOMERCQ M, BRAMBILLA L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity[J]. Nat Neurosci, 2001, 4(7): 702-710.
[[33]]   MEHLA R, BIVALKAR-MEHLA S, NAGARKATTI M, et al. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator[J]. J Neuroinflammation, 2012, 9:239.
[[34]]   PULLIAM L. Cognitive consequences of a sustained monocyte type 1 IFN response in HIV-1 infection[J]. Curr HIV Res, 2014, 12(2): 77-84.
[[35]]   PERRELLA O, CARREIRI P B, PERRELLA A, et al. Transforming growth factor beta-1 and interferon-alpha in the AIDS dementia complex(ADC): possible relationship with cerebral viral load?[J]. Eur Cytokine Netw, 2001, 12(1): 51-55.
[[36]]   SAS A R, BIMONTE-NELSON H, SMOTHERS C T, et al. Interferon-alpha causes neuronal dysfunction in encephalitis[J]. J Neurosci, 2009, 29(12): 3948-3955.
[[37]]   MAJOR E O. Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies[J]. Annu Rev Med, 2010, 61:35-47.
[[38]]   BELTRAMI S, GORDON J. Immune surveillance and response to JC virus infection and PML[J]. J Neuro Virol, 2014, 20(2): 137-149.
[[39]]   SCHWAB N, ULZHEIMER J C, FOX R J, et al. Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control[J]. Neurology, 2012, 78(7): 458-467.
[[40]]   CROSS S A, COOK D R, CHI A W, et al. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection[J]. J Immunol, 2011, 187(10): 5015-5025.
[[41]]   SACKTOR N, MIYAHARA S, DENG L, et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial[J]. Neurology, 2011, 77(12): 1135-1142.
[1] ZHENG Yanrong,ZHANG Xiangnan,CHEN Zhong. Research progress on mechanism of Nix-mediated mitophagy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 92-96.
[2] LI Wenlong,QU Haibin. Application progress on near infrared spectroscopy in quality control and process monitoring of traditional Chinese medicine[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 80-88.
[3] GAO Siqian,SHEN Yongmei,GENG Funeng,LI Yanhua,GAO Jianqing. Research progress on the animal models and treatment strategies of diabetic foot ulcer[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 97-105.
[4] WANG Ying,WANG Yi,CHEN Zhong. The role of central cholinergic system in epilepsy[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 15-21.
[5] GAO Siqian,SHEN Yongmei,GENG Funeng,Yanhua LI,Jianqing GAO. Temporal lobe epilepsy and adult hippocampal neurogenesis[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 97-105.
[6] LI Tongyu, LIANG Ping. Research progress on disease models and gene therapy of Duchenne muscular dystrophy[J]. Journal of ZheJiang University(Medical Science), 2016, 45(6): 648-654.
[7] FENG Sheng, CHEN Jijun, ZHENG Yichun. Research progress on the effect of glucocorticoid receptor signaling pathways in bladder cancer[J]. Journal of ZheJiang University(Medical Science), 2016, 45(6): 655-660.
[8] CAO Peng, LENG Dongjin, LI Ying, ZHANG Ziwei, LIU Lei, LI Xiaoyan. Progress on anti-tumor molecular mechanisms of dihydroartemisinin[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 501-507.
[9] LI Tingting, KE Yuehai, CHENG Hongqiang. Reasearch progress on the role of neutrophils in asthma[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 544-549.
[10] WANG Xue, ZHANG Yuchuan, CHEN Wei. Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 550-557.
[11] HE Bin, CHAI Yanlan, WANG Tao, ZHOU Zhenxing, LIU Zi. Progress on clinical application of bevacizumab for the treatment of refractory cervical cancer[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 395-402.
[12] LI Xueying, ZHU Lixia, YE Xiujin. Aberrant DNA methylation and its targeted therapy in acute myeloid leukemia[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 387-394.
[13] ZHU Tianhong, ZHANG Xinmei. Research progress on the role of epithelial-mesenchymal transition in pathogenesis of endometriosis[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 439-445.
[14] DU Miaomiao, MA Gaigai, SHI Yuping. Research progress on pharmacotherapy of calcific aortic valve disease[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 432-438.
[15] SHEN Yinzhong, LU Hongzhou. Pre-exposure prophylaxis for HIV: clinical practice and challenge[J]. Journal of ZheJiang University(Medical Science), 2016, 45(3): 221-227.