Please wait a minute...
Journal of ZheJiang University(Medical Science)  2015, Vol. 44 Issue (6): 653-658    DOI: 10.3785/j.issn.1008-9292.2015.11.09
    
Construction of early warning model of influenza-like illness in Zhejiang Province based on support vector machine
LU Han-ti1, LI Fu-dong2, LIN Jun-fen2, HE Fan2, SHEN Yi1
1. Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou 310058, China;
2. The Center for Disease Control and Prevention of Zhejiang Province, Hangzhou 310051, China
Download:   PDF(709KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct a forecasting model of influenza-like illness in Zhejiang Province. Methods: The number of influenza-like cases and related pathogens among outpatients and emergency patients were obtained from 11 sentinel hospitals in Zhejiang Province during 2012 to 2013 (total 104 weeks), and corresponding meteorological factors were also collected. The epidemiological characteristics of influenza during the period were then analyzed. Linear correlation and rank correlation analyses were conducted to explore the association between influenza-like illness and related factors. Optimal parameters were selected by cross validation. Support vector machine was used to construct the forecasting model of influenza-like illness in Zhejiang Province and verified by the historical data. Results: Correlation analysis indicated that 8 factors were associated with influenza-like illness occurred in one week. The results of cross validation showed that the optimal parameters were C=3, ε=0.009 and γ=0.4. The results of influenza-like illness forecasting model after verification revealed that support vector machine had the accuracy of 50.0% for prediction with the same level, while it reached 96.7% for prediction within the range of one level higher or lower. Conclusion: Support vector machine is suitable for early warning of influenza-like illness.



Key wordsInfluenza, human/epidemiology      Artificial intelligence      Models, statistical      Forecasting/methods     
Received: 04 May 2015      Published: 12 November 2015
CLC:  R18  
Cite this article:

LU Han-ti, LI Fu-dong, LIN Jun-fen, HE Fan, SHEN Yi. Construction of early warning model of influenza-like illness in Zhejiang Province based on support vector machine. Journal of ZheJiang University(Medical Science), 2015, 44(6): 653-658.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2015.11.09     OR     http://www.zjujournals.com/xueshu/med/Y2015/V44/I6/653


基于支持向量机的浙江省流感样病例预警模型研究

目的:建立浙江省流感样病例预警模型,为流感疫情的早期发现提供科学依据。方法:收集整理2012年1月2日至2013年12月29日期间104周浙江省11家哨点医院门急诊中流感相关疾病病例数、各类气象因素以及流感病原阳性率,与同期流感样病例数作相关分析,寻找出流感样病例发生的相关因素。通过交叉检验选取最优参数,采用支持向量机方法建立流感样病例预警模型,并利用历史数据对模型进行验证。结果:相关性分析显示有8个因素与流感样病例相关。模型的最优参数为:C=3,ε=0.009,γ=0.4,验证结果显示流感样病例预警模型的同级预报正确率为50.0%,相差一级的预报正确率为96.7%。结论:支持向量机方法适用于流感样病例的预警。


关键词: 流感, 人/流行病学,  人工智能,  模型, 统计学,  预测/方法 
[[1]]   李兰娟. 传染病学[M]. 北京: 高等教育出版社, 2004:13. LI Lan-juan. Epidemiology[M]. Beijing: Higher Education Press, 2014:13. (in Chinese)
[[2]]   VAN-DIJK A, ARAMINI J, EDGE G, et al. Real-time surveillance for respiratory disease outbreaks, ontario, Canada[J]. Emerg Infect Dis, 2009,15(5):799-801.
[[3]]   CHRETIEN J P, TOMICH N E, GAYDOS J C, et al. Real-time public health surveillance for emergency preparedness[J]. Am J Public Health, 2009,99(8):1360-1363.
[[4]]   林君芬, 方 乐, 方琼珊, 等. 浙江省2009年甲型H1N1流感流行特征研究[J]. 浙江预防医学, 2010:22(9):5-7. LIN Jun-fen, FANG Le, FANG Qiong-shan, et al. Epidemiological characteristics of novel influenza A (N1H1) in Zhejiang Province in year 2009. Zhejiang Journal of Preventive Medicine, 2010:22(9):5-7. (in Chinese)
[[5]]   侯 岩. 中国卫生年鉴.2010[M]. 北京: 人民卫生出版社, 2011: 45. HOU Yan. Year Book of Health in the People's Republic of China. 2010[M]. Beijing: People's Health Publishing House,2011:45. (in Chinese)
[[6]]   中华人民共和国卫生部. 2011中国卫生统计年鉴[M]. 北京: 中国协和医科大学出版社, 2011: 266-273. Ministry of Health of the People's Republic of China. 2011 China Health Statistical Yearbook [M]. Beijing: Peking Union Medical College Press,2011:266-273. (in Chinese)
[[7]]   张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000,26(1):36-46. ZHANG Xue-gong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000,26(1):36-46. (in Chinese)
[[8]]   李应红, 尉询楷. 支持向量机和神经网络的融合发展[J]. 空军工程大学学报(自然科学版), 2005,6(4):74-77. LI Ying-hong, WEI Xun-kai. Fusion development of support vector machine and neural networks[J]. Journal of Air Force Engineering University(Natural Science Edition), 2005,6(4):74-77. (in Chinese)
[[9]]   李 佳, 王 黎, 马光文, 等. LS-SVM在径流预测中的应用[J]. 中国农村水利水电, 2008,(5):12-14. LI Jia, WANG Li, MA Guang-wen, et al. Application of least squares support vector machines in runoff forecast[J]. China Rural Water and Hydropower, 2008,(5):12-14. (in Chinese)
[[10]]   GRITIANINI N, SHAW E-TAYLOR J. An introduction to support vector machines[M]. Cambridge: Cambridge University Press, 2000.
[[11]]   姜万禄, 刘庆平, 刘 涛. 神经网络学习算法存在的问题及对策[J]. 机床与液压, 2003,(5):29-32. JIANG Wan-lu, LIU Qing-ping, LIU Tao. Drawbacks of neural network learning algorithms and countermeasures[J]. Machine Tool & Hydraulics, 2003,(5):29-32. (in Chinese)
[[12]]   卢 敏, 张展羽. 径流预测的支持向量机应用研究[J]. 中国农村水利水电, 2006,(2):50-52. LU Min, ZHANG Zhan-yu. Application of support vector machine in runoff forecast[J]. China Rural Water and Hydropower, 2006,(2):50-52. (in Chinese)
[1] XU Wei-hua,CHEN You-ling,YAN Zheng. Development of expert diagnostic system for common respiratory diseases[J]. Journal of ZheJiang University(Medical Science), 2014, 43(2): 252-256.