Please wait a minute...
Journal of ZheJiang University(Medical Science)  2015, Vol. 44 Issue (5): 479-485    DOI: 10.3785/j.issn.1008-9292.2015.09.02
    
Sunitinib suppresses migration of ovarian cancer cells through negative modulation of TGF-β-mediated epithelial-mesenchymal transition
CHEN Zi-bo1, CHANG Lin-lin1, ZHOU Tian-yi1, WANG Dan-dan1, CHEN Ying1, ZHAO Ping-ge2, ZHU Hong1
1. Zhejiang Provincial Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
2. Yiwu Central Hospital, Yiwu 322000, China
Download:   PDF(2292KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To investigate the effect of sunitinib on the migration of ovarian cells and its mechanism of the negative regulation TGF-β mediated of epithelial-mesenchymal transition(EMT) by sunitinib to inhibit ovarian cancer metastasis. Methods:The migration of human ovarian cancer cells SKOV3 was evaluated by wound-healing and transwell assays. The effects of sunitinib on TGF-β-induced E-cadherin expression was assessed by Western-blotting, real time RT-PCR and immunofluorescence assay. The protein levels of Snail and the transcriptional activity of Smad in sunitinib-treated cells were examined by Western-blotting and SBE-luciferase assay. Results:Sunitinib suppressed the migration of SKOV3 cells in a concentration-dependent manner. TGF-β stimulation reduced E-cadherin protein level, which was attenuated by sunitinib. Sunitinib inhibited the up-regulation of Snail protein level induced by TGF-β treatment. The SBE reporter was constructed by linking the Smad-binding elements promoter upstream of luciferase reporter gene. A remarkable increment of transcriptional activity of Smads complexes was observed in SKOV3 cells exposed to TGF-β, which was significantly prohibited by sunitinib. Conclusion:Sunitinib can inhibit the migration of SKOV3 cells and attenuate the down-regulation of E-cadherin protein level induced by TGF-β. Sunitinib can abolish TGF-β-induced up-regulation of Snail protein and decrease the transcriptional activity of Smad complexes. The results indicate that sunitinib suppresses migration of ovarian cancer cells through negative modulation of TGF-β-mediated epithelial-mesenchymal transition.



Key wordsOvarian neoplasms/pathology      Stromal cells/pathology      Epithelial cells/pathology      Neoplasm metastasis      Pyrroles/therapeutic use      Indoles/therapeutic use      Cadherins/biosynthesis      Transcription factors     
Received: 15 May 2015     
CLC:  R96  
Cite this article:

CHEN Zi-bo, CHANG Lin-lin, ZHOU Tian-yi, WANG Dan-dan, CHEN Ying, ZHAO Ping-ge, ZHU Hong. Sunitinib suppresses migration of ovarian cancer cells through negative modulation of TGF-β-mediated epithelial-mesenchymal transition. Journal of ZheJiang University(Medical Science), 2015, 44(5): 479-485.

URL:

http://www.zjujournals.com/xueshu/med/10.3785/j.issn.1008-9292.2015.09.02     OR     http://www.zjujournals.com/xueshu/med/Y2015/V44/I5/479


舒尼替尼通过调控转化生长因子β介导的上皮-间质转化抑制卵巢癌细胞转移

目的:研究舒尼替尼通过调控转化生长因子β(TGF-β)介导的上皮-间质转化抑制卵巢癌细胞转移的作用和机制。方法:运用划痕实验和transwell实验考察舒尼替尼对卵巢癌细胞SKOV3运动能力的影响;采用蛋白质印迹法、实时定量PCR技术和免疫荧光技术分析舒尼替尼对TGF-β诱导的钙黏蛋白(E-cadherin)表达的影响;并通过蛋白质印迹法和报告基因检测技术分析舒尼替尼对Snail蛋白水平和Smad转录活性的影响。结果:舒尼替尼可抑制SKOV3细胞的迁移运动,且呈现一定的量效关系。TGF-β刺激SKOV3细胞后,细胞内E-cadherin蛋白表达减少,而舒尼替尼可部分回调TGF-β减少的E-cadherin。TGF-β可诱导Snail蛋白上调,而该效应可被舒尼替尼阻断; TGF-β可增强Smad复合物的转录活性,而舒尼替尼则可削弱TGF-β对该转录活性的诱导作用。结论:舒尼替尼通过干预Smad复合物的转录活性阻断Snail对E-cadherin的负性调控,从而抑制卵巢癌SKOV3细胞发生上皮-间质转化,并干预其运动迁移能力。


关键词: 卵巢肿瘤/病理学,  间质细胞/病理学,  上皮细胞/病理学,  肿瘤转移,  吡咯类/治疗应用,  吲哚类/治疗应用,  钙黏着糖蛋白类/生物合成,  转录因子/生物合成 
[[1]]   SIEGEL R, MA J, ZOU Z, et al. Cancer statistics[J]. CA Cancer J Clin, 2014,64(1):9-29.
[[2]]   DESANTIS C E, LIN C C, MARIOTTO A B, et al. Cancer treatment and survivorship statistics[J]. CA Cancer J Clin, 2014,64(4):252-271.
[[3]]   BOGENRIEDER T, HERLYN M. Axis of evil:molecular mechanisms of cancer metastasis[J]. Oncogene, 2003,22(42):6524-6536.
[[4]]   戴媛媛, 汤致强. 新型多靶点蛋白激酶抑制剂——舒尼替尼[J]. 中国药房, 2008,19(19):1504-1506. DAI Yuan-yuan, TANG Zhi-qiang. A new multi-target kinase inhibitors-sunitinib[J]. China Pharmacy, 2008,19(19):1504-1506.(in Chinese)
[[5]]   KUMAR R M, ARLT M J, KUZMANOV A, et al. Sunitinib malate(SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model[J]. Am J Cancer Res, 2015,5(7):2156-2168.
[[6]]   惠起源, 魏晓萍. 上皮间质转化在肿瘤发生发展中的作用[J]. 中国肿瘤, 2013,22(3):219-222. HUI Qi-yuan, WEI Xiao-ping. The effect of the epithelial mesenchymal transition in the occurrence and development of tumor[J], China Cancer, 2013,22(3):219-222.(in Chinese)
[[7]]   XU J, LAMOUILLE S, DERYNCK R. TGF-β-induced epithelial to mesenchymal transition[J]. Cell Res, 2009,19(2):156-172.
[[8]]   DERYNCK R, MUTHUSAMY B P, SAETEURN K Y. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition[J]. Curr Opin Cell Biol, 2014,12(31):56-66.
[[9]]   VAN ROY F. Beyond E-cadherin:roles of other cadherin superfamily members in cancer[J]. Nat Rev Cancer, 2014,14(2):121-134.
[[10]]   张可华, 宋建国. EMT与肿瘤[J]. 生命的化学, 2008,28(5):523-526. ZHANG Ke-hua, SONG Jian-guo. EMT and tumor[J]. Chemistry of Life, 2008,28(5),523-526.(in Chinese)
[[11]]   BLANCO M J, MORENO-BUENO G, SARRIO D, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas[J]. Oncogene, 2002,21(20):3241-3246.
[[12]]   NIETO M A. The snail superfamily of zinc-finger transcription factors[J]. Nat Rev Mol Cell Biol, 2002,3(3):155-166.
[[13]]   CANO A, PÉREZ-MORENO M A, RODRIGO I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression[J]. Nat Cell Biol, 2000,2(2):76-83.
[[14]]   FENG X H, DERYNCK R. Specificity and versatility in TGF-beta signaling through Smads[J]. Annu Rev Cell Dev Biol, 2005,11(21):659-693.
[[15]]   FAIVRE S, DEMETRI G, SARGENT W, et al. Molecular basis for sunitinib efficacy and future clinical development[J]. Nat Rev Drug Discov, 2007,6(9):734-745.
[[16]]   MOTZER R J, HUTSON T E, TOMCZAK P, et al. Sunitinib versus interferon alpha in metastatic renal-cell carcinoma[J]. N Engl J Med, 2007,356(2):115-124.
[[17]]   HARBOUR J W, LUO R X, DEI SANTI A, et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1[J]. Cell, 1999,98(6):859-869.
[[18]]   LIU F. Smad3 phosphorylation by cyclin-dependent kinases[J]. Cytokine Growth Factor Rev, 2006,17(1-2):9-17.
[[19]]   PARDALI K, MOUSTAKAS A. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer[J]. Biochim Biophys Acta, 2007,1775(1):21-62.
[[20]]   YANG J, WEINBERG R A. Epithelial-mesenchymal transition:at the crossroads of development and tumor metastasis[J]. Dev Cell, 2008,14(6):818-829.
[[21]]   WAKEFIELD L M, ROBERTS A B. TGF-β signaling:positive and negative effects on tumorigenesis[J]. Curr Opin Genet Dev, 2002,12(1):22-29.
[1] HOU Shifang, WANG Zhihua, WANG Jun, HE Zhixu, SHU Liping. Myeloid and erythroid hematopoietic transcription factor expression decline after knockdown of lmna genes in zebrafish embryos[J]. Journal of ZheJiang University(Medical Science), 2016, 45(6): 620-625.
[2] CAO Peng, LENG Dongjin, LI Ying, ZHANG Ziwei, LIU Lei, LI Xiaoyan. Progress on anti-tumor molecular mechanisms of dihydroartemisinin[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 501-507.
[3] YAN Ling, YE Lu, WANG Kun, ZHOU Jie, ZHU Chunjia. Atorvastatin improves reflow after percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction by decreasing serum uric acid level[J]. Journal of ZheJiang University(Medical Science), 2016, 45(5): 530-535.
[4] ZHU Tianhong, ZHANG Xinmei. Research progress on the role of epithelial-mesenchymal transition in pathogenesis of endometriosis[J]. Journal of ZheJiang University(Medical Science), 2016, 45(4): 439-445.
[5] ZHU Hui-hui, ZHAO Xi-bao, HU Wei-wei, CHEN Wei-lin. Research progress on ubiquitin-specific protease in antiviral immunity[J]. Journal of ZheJiang University(Medical Science), 2015, 44(5): 578-583.
[6] ZHANG Jie-qiong, YAO Zhang-ting, LIANG Gui-kai, CHEN Xi, WU Hong-hai, JIN Lu, DING Ling. Combination of lapatinib with chlorogenic acid inhibits breast cancer metastasis by suppressing macrophage M2 polarization[J]. Journal of ZheJiang University(Medical Science), 2015, 44(5): 493-499.
[7] LIU Zhi-xian, WEI Er-qing, LU Yun-bi. Research progress on epithelial-mesenchymal transition in cancer recurrence and metastasis[J]. Journal of ZheJiang University(Medical Science), 2015, 44(2): 211-216.
[8] JIN Wen-yuan, ZHAO Zheng-yan. Progress on association between low-density lipoprotein receptor and metabolic syndrome[J]. Journal of ZheJiang University(Medical Science), 2015, 44(1): 101-107.
[9] JIN Shu-qing,et al. Correlation of PBX2/ELF2 expression with prognosis of non-small cell lung cancer[J]. Journal of ZheJiang University(Medical Science), 2014, 43(4): 413-419.
[10] CAO Pei-long,et al. Expressions of FOXC1 and MMP-7 in molecular subtypes of breast cancer and their association with clinicopathological characteristics [J]. Journal of ZheJiang University(Medical Science), 2014, 43(4): 406-412.
[11] OU Yu-rong,et al. Expression of secreted frizzled related protein 1,β-catenin and E-cadherin in colorectal carcinoma and its clinicopathological significances [J]. Journal of ZheJiang University(Medical Science), 2014, 43(4): 397-405.
[12] ZHAO Liang,et al. Progression in metastasis of colorectal carcinoma[J]. Journal of ZheJiang University(Medical Science), 2014, 43(4): 486-493.
[13] CUI Bi-jun, WANG Qing-qing . Immune function of interleukin33 and its relation to human diseases[J]. Journal of ZheJiang University(Medical Science), 2014, 43(3): 366-371.
[14] LI Guo-zheng,GUO Jing-jing,PENG Cong-bin. Localization of cAMP-response element binding protein target gene Staufen in mouse hippocampus by situ hybridization[J]. Journal of ZheJiang University(Medical Science), 2014, 43(1): 66-70+76.
[15] . Diagnosis value of serum NKX2-1 for primary lung cancer[J]. Journal of ZheJiang University(Medical Science), 2012, 41(5): 535-539.