Please wait a minute...
Journal of ZheJiang University(Medical Science)  2015, Vol. 44 Issue (3): 293-300    DOI: 10.3785/j.issn.1008-9292.2015.05.09
Influence of gelatin particle size and gelatin/calcium phosphate cement ratio on repairing potency of composite artificial bone material
LI Yun1, LIU Yan-ming1, FU Tao1, LI Bo2
1. Department of Oral and Maxillofacial Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
2. Institute of Biomedical Polymers, Zhejiang University, Hangzhou 310031, China
Download: HTML (   PDF(3804KB)
Export: BibTeX | EndNote (RIS)      


Objective: To investigate the influence of gelatin particle(GP) size and gelatin/calcium phosphate cement(GP/CPC) ratio on repairing potency of comparison artificial bone material. Methods: Composite GP/CPC materials with different GP size(100~200 μm vs. 200~300 μm) and ratio(5% vs. 10%) were prepared. Physiochemical and biological properties, including porosity, resistance to compression, ultrastructure and biocompatibility were compared among 4 groups of GP/CPC materials. Different GP/CPC materials were used to repair the critical-size cranial bone defect in rabbit model, and the histology and newly formed bone inside scaffolds(nBIS) were examined and compared among different groups. Results: GP/CPC with GP of 200~300 μm possessed larger micropores than that with GP of 100~200μm(P<0.05). The GP/CPC containing 10% GP had higher porosity than that containing 5% GP(P<0.05). The animal model study showed that more new bone formed in those defects filled with GP/CPC containing 10% GP with 200~300 μm in size compared with GP/CPC containing 5% GP with 100~200 μm in size(P<0.05). While GP/CPC containing 5%GP with 100~200 μm in size showed a higher level of resistance to compression. Conclusion: Both the particle size of GP and its ratio in the GP/CPC affect the properties of the composite biomaterials and their role in bone repairing. In particular, the GP/CPC containing 10% GP with 200~300 μm in size is most suitable for repairing critical-size cranial bone defect in animal model.

Key wordsGelatin/therapeutic use      Microspheres      Bone cements/therapeutic use      Calcium phosphates/therapeutic use      Biocompatible materials/therapeutic use      Skull/injuries      Skull/surgery     
Received: 11 February 2015      Published: 25 May 2015
CLC:  R651  
Cite this article:

LI Yun, LIU Yan-ming, FU Tao, LI Bo. Influence of gelatin particle size and gelatin/calcium phosphate cement ratio on repairing potency of composite artificial bone material. Journal of ZheJiang University(Medical Science), 2015, 44(3): 293-300.

URL:     OR


目的:研究明胶微粒(GP)粒径及明胶与磷酸钙骨水泥(CPC)质量配比这两大因素对GP/ CPC复合人工骨材料修复骨缺损的效果。方法:将不同GP粒径(100~200 μm、200~300 μm)及不同GP与CPC配比(5%GP、10%GP)两两配对后制备GP/CPC复合材料,比较GP/CPC复合材料的孔隙率、抗压强度、表面超微结构、体外生物相容性四大理化特性;构建新西兰兔颅骨缺损模型,在相同质控条件下将上述4组GP/CPC复合人工骨材料进行骨缺损填充,观察并比较其骨修复组织学差异及新骨形成率差异。结果:与粒径100~200 μm的GP和5%GP配比组比较,粒径200~300 μm的GP和10%GP配比制备的GP/CPC复合材料具有较大的孔径和较高的孔隙率(P<0.05),且在兔颅骨缺损修复中有更高的新骨形成量(P<0.05);而100~200 μm粒径、5%GP配比组则具有较强的抗压强度(P<0.05)。结论:不同GP粒径和含量的GP/CPC复合材料理化特性和修复骨缺损的效果不同,其中GP 200~300 μm粒径和10%质量比的GP/CPC复合新型材料更具成骨效果。

关键词: 明胶/治疗应用,  微球体,  骨黏合剂/治疗应用,  磷酸钙类/治疗应用,  生物相容性材料/治疗应用,  颅骨/损伤,  颅骨/外科学 

[1] RUH P Q, KROESE-DEUTMAN H C, WOLKE J G, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits [J]. Biomaterials, 2004,25(11):2123-2132.
[2] BOSE S, TARAFDER S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review [J]. Acta Biomater,2012,8(4):1401-1421.
[3] KEMPEN D H, LU L, HEFFERAN T E, et al. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering [J]. Biomaterials,2008,29(22):3245-3252.
[4] VLAD M D, SINDILAR E V, MARINOSO M L, et al. Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study [J]. Acta Biomater,2010,6(2):607-616.
[5] DEL REAL R P, OOMS E, WOLKE J G, et al. In vivo bone response to porous calcium phosphate cement [J]. J Biomed Mater Res A,2003,65(1):30-36.
[6] MOONEY D J, BALDWIN D F, SUH N P, et al. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents [J]. Biomaterials,1996,17(14):1417-1422.
[7] THOMSON R C, MIKOS A G, BEAHM E, et al. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds [J]. Biomaterials, 1999,20(21):2007-2018.
[8] NARAYAN D, VENKATRAMAN S S. Effect of pore size and interpore distance on endothelial cell growth on polymers [J]. J Biomed Mater Res A,2008,87(3):710-718.
[9] OH S H, PARK I K, KIM J M, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method [J]. Biomaterials,2007,28(9):1664-1671.
[10] KARAGEORGIOU V, KAPLAN D. Porosity of 3D biomaterial scaffolds and osteogenesis [J]. Biomaterials,2005,26(27):5474-5491.
[11] AKAY G, BIRCH M A, BOKHARI M A. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro [J]. Biomaterials,2004,25(18):3991-4000.
[12] LU J X, FLAUTRE B, ANSELME K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo [J]. J Mater Sci Mater Med,1999,10(2):111-120.
[13] MASTROGIACOMO M, SCAGLIONE S, MARTINETTI R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics [J]. Biomaterials,2006,27(17):3230-3237.
[14] MURPHY C M, HAUGH M G, O'BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering [J]. Biomaterials,2010,31(3):461-466.
[15] GRIFFON D J, SEDIGHI M R, SCHAEFFER D V, et al. Chitosan scaffolds: interconnective pore size and cartilage engineering [J]. Acta Biomater,2006,2(3):313-320.
[16] SOBRAL J M, CARIDADE S G, SOUSA R A, et al. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency [J]. Acta Biomater,2011,7(3):1009-1018.
[17] HOLLINGER J O, KLEINSCHMIDT J C. The critical size defect as an experimental model to test bone repair materials [J]. J Craniofac Surg,1990,1(1):60-68.
[18] KASUYA A, SOBAJIMA S, KINOSHITA M. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation [J]. J Orthop Res,2012,30(7):1103-1111.
[19] LIN A S, BARROWS T H, CARTMELL S H, et al. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds [J]. Biomaterials,2003,24(3):481-489.
[20] KOKUBO T, KIM H M, KAWASHITA M. Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003,24(13):2161-2175.
[21] LASCHKE M W, STROHE A, SCHEUER C, et al. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering [J]. Acta Biomater,2009,5(6):1991-2001.
[22] BURG K J, PORTER S, KELLAM J F. Biomaterial developments for bone tissue engineering [J]. Biomaterials,2000,21(23):2347-2359.

[1] CHEN Gang,ZHANG Ding,YING Yacao,WANG Zhifeng,TAO Wei,ZHU Hao,ZHANG Jingfeng,PENG Zhiyi. Clinical investigation on transarterial chemoembolization with indigenous drug-eluting beads in treatment of unresectable hepatocellular carcinoma[J]. Journal of ZheJiang University(Medical Science), 2017, 46(1): 44-51.
[2] LI Jiang,et al. Surgical treatment combined with oral administration of indomethacin for eosinophilic granuloma of the skull: report of a pediatric case[J]. Journal of ZheJiang University(Medical Science), 2014, 43(4): 501-503.
[3] . Preparation method of polystyrene core-poly (acrylamide-acrylic acid) shell fluorescent microspheres[J]. Journal of ZheJiang University(Medical Science), 2011, 40(1): 44-50.