Please wait a minute...
Journal of ZheJiang University(Medical Science)  2015, Vol. 44 Issue (2): 211-216    DOI: 10.3785/j.issn.1008-9292.2015.03.015
    
Research progress on epithelial-mesenchymal transition in cancer recurrence and metastasis
LIU Zhi-xian, WEI Er-qing, LU Yun-bi
Department of Pharmacology, Zhejiang University, School of Medicine, Hangzhou 310058, China
Download: HTML (   PDF(544KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their morphology and function and gradually transformed into mesenchymal-like cells. It is considered that EMT is the main cause for tumor recurrence and metastasis. Many factors are involved in the regulation of EMT, such as E-cadherin, transforming growth factor-β, Wnt signaling pathway, microRNA and EMT-related transcription factors. This article reviews the research progress on EMT and the involved mechanisms, and thus to provide a new perspective on cancer therapy in the future.



Key wordsNeoplasms      Cadherins      Transcription factors      Stromal cells/pathology      Epithelial cells/pathology      Biotransformation      Review     
Received: 19 October 2014      Published: 25 March 2015
CLC:  R730.23  
Cite this article:

LIU Zhi-xian, WEI Er-qing, LU Yun-bi. Research progress on epithelial-mesenchymal transition in cancer recurrence and metastasis. Journal of ZheJiang University(Medical Science), 2015, 44(2): 211-216.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2015.03.015     OR     http://www.zjujournals.com/med/Y2015/V44/I2/211


上皮—间质转化在肿瘤发生发展中的作用研究进展

上皮—间质转化(EMT)是上皮细胞失去其形态和功能逐渐转化为间质样细胞的过程,与肿瘤复发和转移相关。EMT的调控因素有很多,如E-钙黏蛋白、转化生长因子β、Wnt信号通路、微RNA及转录因子等。本文就目前关于EMT在肿瘤中的作用以及EMT的调节机制的研究进展做一综述,以期对肿瘤的治疗提供新的线索。


关键词: 肿瘤,  钙黏着糖蛋白类,  转录因子,  间质细胞/病理学,  上皮细胞/病理学,  生物转化,  综述 

[1] THIERY J P, ACLOQUE H, HUANG R Y, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5):871-890.
[2] TSAI J H, YANG J. Epithelial-mesenchymal plasticity in carcinoma metastasis [J]. Genes Dev, 2013, 27(20):2192-2206.
[3] GREENBURG G, HAY E D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells [J]. J Cell Biol, 1982, 95(1):333-339.
[4] BARTIS D, MISE N, MAHIDA R Y, et al. Epithelial-mesenchymal transition in lung development and disease:does it exist and is it important? [J]. Thorax, 2014, 69(8):760-765.
[5] XIONG J, SUN Q, JI K, et al. Epidermal growth factor promotes transforming growth factor-beta1-induced epithelial-mesenchymal transition in HK-2 cells through a synergistic effect on Snail [J]. Mol Biol Rep, 2014, 41(1):241-250.
[6] JUNG H Y, FATTET L, YANG J. Molecular pathways:Linking tumor microenvironment to epithelial to mesenchymal transition in metastasis. Clin Cancer Res, 2015, 21(5):962-968.
[7] CHUNG H W, LIM J B. Role of the tumor microenvironment in the pathogenesis of gastric carcinoma [J]. World J Gastroenterol, 2014, 20(7):1667-1680.
[8] LEIBOVICH-RIVKIN T, LIUBOMIRSKI Y, BERNSTEIN B, et al. Inflammatory factors of the tumor microenvironment induce plasticity in nontransformed breast epithelial cells:EMT, invasion, and collapse of normally organized breast textures [J]. Neoplasia, 2013, 15(12):1330-1346.
[9] LEBRET S C, NEWGREEN D F, THOMPSON E W, et al. Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors [J]. Breast Cancer Res, 2007, 9(1):R19.
[10] LEWIS M P, LYGOE K A, NYSTROM M L, et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells [J]. Br J Cancer, 2004, 90(4):822-832.
[11] MATSUOKA J, YASHIRO M, FUYUHIRO Y, et al. Hypoxia stimulates the EMT of gastric cancer cells through autocrine TGFβ signaling [J].PLoS One, 2013, 8(5):e62310.
[12] MISRA A, PANDEY C, SZE S K, et al. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT) [J]. PLoS One, 2012, 7(11):e49766.
[13] TEPASS U, TRUONG K, GODT D, et al. Cadherins in embryonic and neural morphogenesis [J]. Nat Rev Mol Cell Biol, 2000, 1(2):91-100.
[14] SHARGH S A, SAKIZLI M, KHALAJ V, et al. Downregulation of E-cadherin expression in breast cancer by promoter hypermethylation and its relation with progression and prognosis of tumor [J]. Med Oncol, 2014, 31(11):250.
[15] ELLOUL S, VAKSMAN O, STAVNES H T, et al. Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions [J]. Clin Exp Metastasis, 2010, 27(3):161-172.
[16] HUDSON L G, ZEINELDIN R, STACK M S. Phenotypic plasticity of neoplastic ovarian epithelium:unique cadherin profiles in tumor progression [J]. Clin Exp Metastasis, 2008, 25(6):643-655.
[17] ONG A, MAINES-BANDIERA S L, ROSKELLEY C D, et al. An ovarian adenocarcinoma line derived from SV40/E-cadherin-transfected normal human ovarian surface epithelium [J]. Int J Cancer, 2000, 85(3):430-437.
[18] YE Y, TELLEZ J D, DURAZO M, et al. E-cadherin accumulation within the lymphovascular embolus of inflammatory breast cancer is due to altered trafficking [J]. Anticancer Res, 2010, 30(10):3903-3910.
[19] FRIEDL P, GILMOUR D. Collective cell migration in morphogenesis, regeneration and cancer [J]. Nat Rev Mol Cell Biol, 2009, 10(7):445- 457.
[20] MACPHERSON I R, HOOPER S, SERRELS A, et al. p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phosphorylation-independent mechanism [J]. Oncogene, 2007, 26(36):5214-5228.
[21] NIEWIADOMSKA P, GODT D, TEPASS U. DE-Cadherin is required for intercellular motility during Drosophila oogenesis [J]. J Cell Biol, 1999, 144(3):533-547.
[22] KARDASH E, REICHMAN-FRIED M, MAITRE J L, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo [J]. Nat Cell Biol, 2010, 12(1):47-53.
[23] LIN CW, KAO S H, YANG P C. The miRNAs and Epithelial-Mesenchymal Transition in Cancers [J]. Curr Pharm Des, 2014, 20(33):5309-5318.
[24] DIAZ-LOPEZ A, MORENO-BUENO G, CANO A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives [J]. Cancer Manag Res, 2014, 6:205-216.
[25] KATSUNO Y, LAMOUILLE S, DERYNCK R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression [J]. Curr Opin Oncol, 2013, 25(1):76-84.
[26] SUWANABOL P A, SEEDIAL S M, ZHANG F, et al. TGF-beta and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells [J]. Am J Physiol Heart Circ Physiol, 2012, 302(11):H2211-2219.
[27] SANTARPIA L, LIPPMAN S M, EL-NAGGAR A K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy [J]. Expert Opin Ther Targets, 2012, 16(1):103-119.
[28] AREND R C, LONDONO-JOSHI A I, STRAUGHN J M JR., et al. The Wnt/beta-catenin pathway in ovarian cancer:a review [J]. Gynecol Oncol, 2013, 131(3):772-779.
[29] CHO S W, KIM Y A, SUN H J, et al. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of beta-catenin/E-cadherin signaling [J]. J Clin Endocrinol Metab, 2014, 99(9):E1641-E1649.
[30] GONG K, ZHOU F, HUANG H, et al. Suppression of GSK3beta by ERK mediates lipopolysaccharide induced cell migration in macrophage through beta-catenin signaling [J]. Protein Cell, 2012, 3(10):762-768.
[31] PUISIEUX A, BRABLETZ T, CARAMEL J. Oncogenic roles of EMT-inducing transcription factors [J]. Nat Cell Biol, 2014, 16(6):488-494.
[32] CORTEZ V, NAIR B C, CHAKRAVARTY D, et al. Integrin-linked kinase 1:role in hormonal cancer progression [J]. Front Biosci (Schol Ed), 2011, 3:788-796.
[33] RIVENBARK A G, COLEMAN W B. Epigenetic regulation of cystatins in cancer [J]. Front Biosci (Landmark Ed), 2009, 14:453-462.
[34] PELAIA G, GALLELLI L, RENDA T, et al. Effects of statins and farnesyl transferase inhibitors on ERK phosphorylation, apoptosis and cell viability in non-small lung cancer cells [J]. Cell Prolif, 2012, 45(6):557-565.
[35] WILSON C, NICHOLES K, BUSTOS D, et al. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition [J]. Oncotarget, 2014, 5(17):7328-7341.
[36] MIKAMI S, KATSUBE K, OYA M, et al. Expression of Snail and Slug in renal cell carcinoma:E-cadherin repressor Snail is associated with cancer invasion and prognosis [J]. Lab Invest, 2011, 91(10):1443-1458.
[37] MOORE L D, ISAYEVA T, SIEGAL G P, et al. Silencing of transforming growth factor-beta1 in situ by RNA interference for breast cancer:implications for proliferation and migration in vitro and metastasis in vivo [J]. Clin Cancer Res, 2008, 14(15):4961-4970.
[38] KRUTZFELDT J, RAJEWSKY N, BRAICH R, et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature, 2005, 438(7068):685-689.

[1] WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 525-533.
[2] HU Caiqin,ZHU Biao. Progress on pathogenesis of progressive multifocal leukoence-phalopathy[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 534-540.
[3] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 552-557.
[4] LI Gaopeng,HE Jia,WANG Qingqing. Progress on cancer associated fibroblasts in tumor immunoregulation[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 558-563.
[5] YE Jianyu,SUN Ziyu,HU Weiwei. Roles of astrocytes in cerebral infarction and related therapeutic strategies[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 493-498.
[6] WU You,LIANG Shunli,XU Bin,ZHANG Rongbo,XU Linsheng. Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 480-486.
[7] HU Zheng,MA Ding. Precision screening and treatment of human papilloma virus related cervical cancer[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 338-343.
[8] DI Chenhong,JIN Fan. Value of combined detection of claudin 4 and high-risk human papilloma virus in high-grade squamous intraepithelial lesion and cervix squamous cell carcinoma[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 344-350.
[9] LOU Yelin,ZHOU Yimin,LU Hong,LYU Weiguo. Establishment of a prognostic model for preterm delivery in women after cervical conization[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 351-356.
[10] CHEN Qian,LIU Lu,ZHANG Jingjing,HAN Sai,CUI Baoxia,ZHANG Youzhong,KONG Beihua. Clinical features and prognosis of cervical adenocarcinoma and adenosquamous carcinoma: an analysis of 237 cases[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 357-361.
[11] CHEN Zhiqiang,MI Xianjun,CHEN Ang,DUAN Lifeng,DAI Xinzhen,DENG Wentong. Paraffin section thickness in immunohistochemical detection of p16 expression in cervical tissue samples[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 362-366.
[12] LI Chen,ZHU Yao,YANG Jinhua,XU Dongsheng,WANG Jianbing,CHEN Kun,LI Qilong. Incidence of lung cancer in Jiashan, Zhejiang province: trend analysis from 1987 to 2016 and projection from 2017 to 2019[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 367-373.
[13] CHEN Shujun,SHAO Guoliang,SHAO Feng,ZHANG Minming. Diffusion-weighted imaging texture features in differentiation of malignant from benign nonpalpable breast lesions for patients with microcalcifications-only in mammography[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 400-404.
[14] ZHANG Lifeng,ZHANG Xinmei. Research progress on roles of vitamin D in endometriosis[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 413-418.
[15] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. Journal of ZheJiang University(Medical Science), 2018, 47(4): 419-425.