Drug resistance,bacterial/genetics,Drug tolerance,Genotype,Gene expression,Polymerase chain reaction,Bacteria,Resistance
gene/detection,Inactive enzyme/expression;
Regulation mechanism
," /> Drug resistance,bacterial/genetics,Drug tolerance,Genotype,Gene expression,Polymerase chain reaction,Bacteria,Resistance
gene/detection,Inactive enzyme/expression;
Regulation mechanism
,"/> Drug resistance,bacterial/genetics,Drug tolerance,Genotype,Gene expression,Polymerase chain reaction,Bacteria,Resistance
gene/detection,Inactive enzyme/expression;
Regulation mechanism
,"/> 细菌药物钝化酶基因分布及其表达诱导与抑制机制的研究
Please wait a minute...
Journal of ZheJiang University(Medical Science)  2013, Vol. 42 Issue (2): 131-140    DOI: 10.3785/j.issn.1008-9292.2013.02.002
    
Distribution of drug inactive enzyme genes in bacterial isolates and mechanism of its induction and inhibition
WU Yi-Fei1, SUN Ai-Hua2, ZHAO Jin-Fang3, GE Yu-Mei1, YAN Jie1
1.Department of Medical Microbiology and Parasitology,Zhejiang University School of Medicine,Hangzhou 310058,China; 2.Zhejiang Medical College,Hangzhou 310053,China; 3.Department of Laboratory Medicine,the First Affiliated Hospital of Zhejiang Chinese Medical University,Hangzhou 310006,China
Download: HTML (   PDF(1249KB)
Export: BibTeX | EndNote (RIS)      

Abstract  
Objective: To determine the distribution and the predominant gene carrying model of drug inactive enzyme genes in bacterial isolates,and the mechanism of its induction and inhibition.
Methods: The β-lactam,aminoglycosides and macrolides inactive enzyme genes were detected by PCR and sequencing in S.aureus, E.coli,K.pncumoniae, A.baumanii and E.cloacae isolates.The expression of inactive enzyme genes were examined by real-time fluorescent quantitative RT-PCR when the bacterial isolates were treated with antibiotics or a histidine kinase blocker closantel.
Results: In 63 isolates of E.coli,4 kinds of β-lactam,2 aminoglycosides and 1 macrolides inactive enzyme-encoding genes were detected and the predominant gene-carrying models were [TEM+CTX-M]+aac(3)-Ⅱ+mphA(25.4%) and [TEM+CTX-M]+ aac(6′)-Ⅰb(20.6%).In 24 isolates of S.aureus,2 kinds of β-lactam and 3 aminoglycosides inactive enzyme-encoding genes were detected and the predominant gene-carrying models were aph(3′)(41.7%) or aac(6)-Ⅰe-aph(2)-Ⅰa(25.0%).In 28 isolates of K.pncumoniae,4 kinds of β-lactam and 2 aminoglycosides inactive enzyme-encoding genes were detected and the predominant gene-carrying models were [TEM+SHV]+[aac(6′)-Ⅰb+aac(3)-Ⅱ](28.6%) and [TEM+SHV]+[aac(6′)-Ⅰb+aac(3)-Ⅱ]+ mphA(17.8%).The
isolates of A.baumanii and E.cloacae also had a predominant model to carry 2 or 3 kinds of inactive enzyme-encoding genes.1/4 MIC of penicillin,cefotaxime or streptomycin induced the up-regulation of expression of 3 β-lactam or 4 aminoglycosides inactive enzyme-encoding genes(P<0.05),and this effect was inhibited by closantel(P<0.05).
Conclusions: The bacterial isolates frequently carry multiple kinds of inactive enzyme-encoding genes with different predominant gene-carrying models.Low concentration antibiotics can induce the up-regulation of inactive enzyme gene expression,which can be inhibited by histidine kinase blocker.


Key wordsDrug resistance,bacterial/genetics')" href="#"> ')" href="#">Inactive enzyme/expression;
Regulation mechanism
     
Received: 28 December 2012      Published: 25 March 2013
CLC:  R 378  
Service
E-mail this article Drug resistance,bacterial/genetics|Drug tolerance|Genotype|Gene expression|Polymerase chain reaction|Bacteria|Resistance
gene/detection; Inactive enzyme/expression;
Regulation mechanism
”. Please open it by linking:http://www.zjujournals.com/med/EN/abstract/abstract19105.shtml" name="neirong"> Drug resistance,bacterial/genetics|Drug tolerance|Genotype|Gene expression|Polymerase chain reaction|Bacteria|Resistance
gene/detection; Inactive enzyme/expression;
Regulation mechanism
">
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WU Yi-Fei
SUN Ai-Hua
ZHAO Jin-Fang
GE Yu-Mei
YAN Jie
Cite this article:

WU Yi-Fei, SUN Ai-Hua, ZHAO Jin-Fang, GE Yu-Mei, YAN Jie. Distribution of drug inactive enzyme genes in bacterial isolates and mechanism of its induction and inhibition. Journal of ZheJiang University(Medical Science), 2013, 42(2): 131-140.

URL:

http://www.zjujournals.com/med/10.3785/j.issn.1008-9292.2013.02.002     OR     http://www.zjujournals.com/med/Y2013/V42/I2/131


细菌药物钝化酶基因分布及其表达诱导与抑制机制的研究

目的:了解临床常见病原菌药物钝化酶基因及其优势基因携带模式,抗生素诱导药物钝化酶基因表达上调的作
用及其与细菌组氨酸激酶的关系。
方法:采用PCR和测序法,了解金黄色葡萄球菌、大肠埃希菌、肺炎克雷伯菌、鲍曼不动杆菌、阴沟肠杆菌临床菌株携带的β-内酰胺类、氨基糖苷类、大环内酯类钝化酶基因。采用实时荧光定量RT-PCR,了解抗生素诱导及组氨酸激酶阻断剂氯氰碘柳胺抑制药物钝化酶基因表达的作用。
结果:63株大肠埃希菌中检出4种β-内酰胺类、2种氨基糖苷类和1种大环内酯类钝化酶基因,优势基因携带模式为[TEM+CTX-M]+aac(3)-Ⅱ+mphA 16株(25.4%)和[TEM+CTX-M]+aac(6′)-Ⅰb 13株(20.6%)。24株金黄色葡
萄球菌中检出2种β-内酰胺类、3种氨基糖苷类钝化酶基因,优势基因携带模式为aph(3′)(41.7%)或aac(6)-Ⅰe-
aph(2)-Ⅰa(25.0%)。28株肺炎克雷伯菌中检出4种β-内酰胺酶、2种氨基糖苷类钝化酶基因,优势基因携带模式为
[TEM+SHV]+[aac(6′)-Ⅰb+aac(3)-Ⅱ](28.6%)和[TEM+SHV]+[aac(6′)-Ⅰb+aac(3)-Ⅱ]+mph(17.8%)。鲍曼不动杆菌和阴沟肠杆菌也以携带两类或三类药物钝化酶基因为优势模式。1/4 MIC青霉素、头胞噻肟和链霉素,能诱导3种β-内酰胺类和4种氨基糖苷类钝化酶基因表达显著上调(P<0.05),该诱导作用可被氯氰碘柳胺
所抑制(P<0.05)。
结论:上述临床常见病原菌多携带多类药物钝化酶基因并存在不同的优势基因携带模式。低浓度抗生素可能诱导药物钝化酶基因表达上调,但可被组氨酸激酶阻断剂所抑制。

关键词:
抗药性,  细菌/遗传学,  药物耐受性,  基因型,  基因表达,  聚合酶链反应,  细菌,  耐药基因/检测,  药物钝化酶/表达,  调控机制
 
[1]LIVERMORE D M.Fourteen years in resistance [J].Int J Antimicrob Agents,2012,39(4):283-294.
[2]LESTARI E S,SEVERIN J A,VERBRUGH H A.Antimicrobial resistance among pathogenic bacteria in Southeast Asia [J].Southeast Asian J Trop Med Public Health,2012,43(2):385-422.
[3]SUN A H,FAN X L,GU Yi,et al.Predominant porB1A and porB1B genotypes and correlation of gene mutations with drug resistance in Neisseria gonorrhoeae isolates in Eastern China [J].BMC Infect Dis,2010,10:323-331.
[4]FARREL D J,CASTANHEIRA M,MENDES R E,et al.In vitro activity of ceftaroline against multidrug-resistant Staphylococcus aureus and Streptococcus pneumoniae: a review of published studies and the AWARE Surveillance Program(2008-2010) [J].Clin Infect Dis,2012,55(Suppl 3):S206-214.
[5]YU Yunsong,LV Fangfang,SONG Xiulan(俞云松,吕芳芳,宋秀兰,等),et al.Encoding genes and genotypes of β-lactamases produced by a multiple resistant Klebsiella pneumoniae [J].Journal of Zhejiang University: Medical Sciences(浙江大学学报医学版),2002,31(6):457-460.
[6]ZHANG Wei,LIU Kaizhong(张维,柳开忠).Mechanisms of carbapenems resistance in Acinetobacter and progress of treatment [J].Journal of Zhejiang University: Medical Sciences(浙江大学学报医学版),2010,39(5):542-547.(in Chinese)
[7]MEZZATESTA M L,GONA F,STEFANI S.Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance [J].Future Microbiol,2012,7(7):887-902.
[8]BEREKET W,HEMALATHA K,GETENET B,et al.Update on bacterial nosocomial infections [J].Eur Rev Med Pharmacol Sci,2012,16(8):1039-1044.
[9]ZHUO Chao,Su Danhong,NI Yuxing,et al(卓超,苏丹虹,倪语星,等).CHINNET 2009 surveillance of antimicrobial resistance in E.coli and Klebsiella spp in China [J].Chinese Journal of Infection and Chemotherapy(中国感染与化疗杂志),2010,10(6):430-435.(in Chinese)
[10]JIANG Wei,CHANG Dong,HUANG Zhihong(蒋伟,常东,黄志红,等),et al.Analysis of current drug resistance in bacterial isolates in clinic [J].Chinese Journal of Nosocomiology(中华医院感染学杂志),2002,12(9):646-653.(in Chinese)
[11]DAVIES J.Inactivation of antibiotics and the dissemination of resistance genes [J].Science,1994,264(5157):375-382.
[12]CASINO P,RUBIO V,MARINA A.The mechanism of signal transduction by two-component systems [J].Curr Opin Struc Biol,2010,20(6):763-771.
[13]KUMAGAI Y,CHENG Z,LIN M,et al.Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion [J].Infect Immun,2006,74(9):5014-5022.
[14]SAMBROOK J,FRITSCH E F,MANIATIS T.Molecular Cloning: A Laboratory Manual [M].2nd edition,New York: Cold Sping Harbor Labooratory Press,1989,1.21-1.52,2.60-2.80,7.3-7.35,9.14-9.22.
[15]YIGIT H,QUEENAN A M,ANDERSON G J,et al.Novel carbapenem-hydrolyzing beta-lactamase,KPC-1,from a carbapenem-resistant strain of Klebsiella pneumoniae [J].Antimicrob Agents Chemother,2001,45(4):1151-1161.
[16]YU Y,JI S,CHEN Y,et al.Resistance of strains producing extended-spectrum beta-lactamases and genotype distribution in China [J].J Infect,2007,54(1):53-57.
[17]NUESCH-INDERINEN M T,HACHLER H,KAYSER F H.Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method,and comparison with E test [J].Eur J Clin Microbiol Infect Dis,1996,15(5): 398-402.
[18]JOS A M,van KLUNDERT D,VLIEGENTHART J S.PCR detection of genes coding for aminoglycoside-modifying enzymes.In: Persing DH,Smith TF,Tenover FC,White TJ,editors.Diagnostic Molecular Microbiology Principles and Applications.Washington,DC: American Society for Microbiology,1993,547-552.
[19]SUTCLIFFE J,GREBE T,TAIT-kAMRADT A,et al.Detection of erythromycin-resistant determinants by PCR [J].Antimicrob Agents Chemother,1996,40(11): 2562-2566.
[20]PFAFFL M W,HORAG G W,DEMPFLE L.Relative expression software tool(REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR [J].Nucleic Acids Res,2002,30(9):e36.
[21]JEANA S S,HSUEH P R.High burden of antimicrobial resistance in Asia [J].International Journal of Antimicrobial Agents,2012,37(4):291-295.
[22]KONG Haishen,YANG Qing,CHEN Xiao(孔海深,杨青,陈晓,等),et al.Mohnarin report 2010: Surveillance of bacterial resistance in East China [J].Chinese Journal of Nosocomiology(中华医院感染学杂志),2011,21(23):4915-4920.(in Chinese)
[23]SUN Aihua,FAN Huan,XIA Xiaoping(孙爱华,樊欢,夏肖萍,等),et al.Recombinant expression of Streptococcus pnumoniae ciaH/R genes and their correlation with β-lactam antibiotic resistance [J].Journal of Zhejiang University: Medical Sciences(浙江大学学报医学版),2008,37(6):605-611.(in Chinese)
[24]FAN Huan,YAN Jie,SUN Aihua(樊欢,严杰,孙爱华).Correlation of two-component signaling system ComD/ComE and β-lactam antibiotic resistance of Streptococcus pneumoniae  [J].Chinese Journal of Microbiology and Immunology(中华微生物学和免疫学杂志),2010,30(11):1038-1043.(in Chinese)
[25]SUN Aihua,FAN Huan,XIA Xiaoping(孙爱华,樊欢,夏肖萍,等),et al.Recombinant expression of Streptococcus pnumoniae ciaH/R genes and their correlation with β-lactam antibiotic resistance [J].Journal of Zhejiang University: Medical Sciences(浙江大学学报医学版),2008,37(6):605-611.(in Chinese)
[1] WANG Anqi,LIU Xinyue. Association of CXCL12/CXCR4 gene polymorphisms with genetic risk and severity of coronary stenosis in patients with coronary artery disease[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 514-519.
[2] SHI Ting,YE Xiujin. Roles of CCAAT enhancer binding protein α in acute myeloblastic leukemia[J]. Journal of ZheJiang University(Medical Science), 2018, 47(5): 552-557.
[3] CHEN Ting,ZHAO Zhengyan,JIANG Pingping,SHU Qiang. Research progress on phenotype and genotype of hyperphenylalaninemia[J]. Journal of ZheJiang University(Medical Science), 2018, 47(3): 219-226.
[4] JIANG Yanqi,YANG Yalan,YANG Ting,LI Yueling,CHEN Liling,YAN Jin,YANG Yanfang. Association of UCP2 rs659366 polymorphisms with the outcomes of patients after surgery for colorectal cancer[J]. Journal of ZheJiang University(Medical Science), 2018, 47(2): 143-149.
[5] PENG Dandan,ZHOU Xudong. Parents' antibiotic use for children in Ningbo: knowledge, behaviors and influencing factors[J]. Journal of ZheJiang University(Medical Science), 2018, 47(2): 156-162.
[6] PAN Zongfu,FANG Qilu,ZHANG Yiwen,LI Li,HUANG Ping. Identification of key pathways and drug repurposing for anaplastic thyroid carcinoma by integrated bioinformatics analysis[J]. Journal of ZheJiang University(Medical Science), 2018, 47(2): 187-193.
[7] XIA Haixiong,LI Li,ZHOU Yanhua,REN Pingping,HE Zhixu,SHU Liping. Expression of g6pd gene in wild type zebrafish embryos of early development[J]. Journal of ZheJiang University(Medical Science), 2018, 47(1): 57-63.
[8] WANG Jiajing,GU Haiying. Research progress on genotyping of Helicobacter pylori[J]. Journal of ZheJiang University(Medical Science), 2018, 47(1): 97-103.
[9] WANG Mengyan, ZHU Biao. Research progress on genes mutations related to sulfa drug resistance in Pneumocystis jirovecii[J]. Journal of ZheJiang University(Medical Science), 2017, 46(5): 563-569.
[10] JIANG Yiqian, GUO Qingmin, GU Jianzhong, XU Xiaoping, AN Suhong, SU Fang, BAO Yanhong, HUANG Changxin, GUAN Xiaoxiang. Effect of microRNA-29b on proliferation and migration of breast cancer cells and its molecular mechanism[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 349-356.
[11] LI Yu, WANG Yueyue, WANG Haifeng, ZHANG Lingyu, DING Yongxing, CHEN Sulian, YANG Qingling, CHEN Changjie. Effects of lncRNA RP11-770J1.3 and TMEM25 expression on paclitaxel resistance in human breast cancer cells[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 364-370.
[12] CHEN Dahua, LI Youming. Construction of all-in-one CRISPR/Cas9 vector system targeting miR-101a gene in mouse hepatic cell line AML12[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 427-432.
[13] REN Xiaomei, XIN Bao, QIAN Wenwen, ZHANG Rongqiang. Effects of low salt diet on gene expression in dog's heart[J]. Journal of ZheJiang University(Medical Science), 2017, 46(4): 433-438.
[14] SUN Yixi, LUO Yuqin, QIAN Yeqing, DONG Minyue, JIN Fan. Single nucleotide polymorphism-array in genetic analysis of chorionic villi from early spontaneous miscarriages[J]. Journal of ZheJiang University(Medical Science), 2017, 46(3): 262-267.
[15] HE Yujie,PAN Jianping. Progress on mechanisms for pathogensto evade NOD-like receptor and Toll-like receptor signaling pathways[J]. Journal of ZheJiang University(Medical Science), 2017, 46(2): 218-224.