Please wait a minute...
J Zhejiang Univ (Med Sci)  2022, Vol. 51 Issue (1): 102-107    DOI: 10.3724/zdxbyxb-2021-0398
Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis
WANG Wenni,CHEN Chaoqun,GU Xinhua
Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Download: HTML( 10 )   PDF(2002KB)
Export: BibTeX | EndNote (RIS)      


Magnetic nanoparticles (MNP) have been widely used as biomaterials due to their unique magnetic responsiveness and biocompatibility, which also can promote osteogenic differentiation through their inherent micro-magnetic field. The MNP composite scaffold retains its superparamagnetism, which has good physical, mechanical and biological properties with significant osteogenic effects in vitro and in vivo. Magnetic field has been proved to promote bone tissue repair by affecting cell metabolic behavior. MNP composite scaffolds under magnetic field can synergically promote bone tissue repair and regeneration, which has great application potential in the field of bone tissue engineering. This article summarizes the performance of magnetic composite scaffold, the research progress on the effect of MNP composite scaffold with magnetic fields on osteogenesis, to provide reference for further research and clinical application.

Key wordsMagnetic nanoparticle      Composite scaffold      Magnetic field      Osteogenesis      Review     
Received: 15 July 2021      Published: 17 May 2022
CLC:  R459.9  
Corresponding Authors: GU Xinhua   
Cite this article:

WANG Wenni,CHEN Chaoqun,GU Xinhua. Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis. J Zhejiang Univ (Med Sci), 2022, 51(1): 102-107.

URL:     OR



关键词: 磁性纳米粒子,  复合支架,  磁场,  成骨,  综述 
[1]   HUANGJ, LIUW, LIANGY, et al.Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold[J]Mater Sci Eng C, 2018, 70-77.
doi: 10.1016/j.msec.2018.02.003
[2]   SASAKIT, IWASAKIN, KOHNOK, et al.Magnetic nanoparticles for improving cell invasion in tissue engineering[J]J Biomed Mater Res B Appl BioMater, 2008, 86A( 4): 969-978.
doi: 10.1002/jbm.a.31724
[3]   MONDOLS, MANIVASAGANP, BHARATHIRAJAS, et al.Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application[J]Int J Nanomedicine, 2017, 8389-8410.
doi: 10.2147/IJN.S147355
[4]   LIX, WEIJ, AIFANTISK E, et al.Current investigations into magnetic nanoparticles for biomedical applications[J]J Biomed Mater Res B Appl BioMater, 2016, 104( 5): 1285-1296.
doi: 10.1002/jbm.a.35654
[5]   YUNH M, AHNS J, PARKK R, et al.Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation[J]Biomaterials, 2016, 88-98.
doi: 10.1016/j.biomaterials.2016.01.035
[6]   SINGHR K, PATELK D, LEEJ H, et al.Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration[J/OL]PLoS One, 2014, 9( 4): e91584.
doi: 10.1371/journal.pone.0091584
[7]   PAUNI A, CALINB S, MUSTACIOSUC C, et al.3D superparamagnetic scaffolds for bone mineralization under static magnetic field stimulation[J]Materials, 2019, 12( 17): 2834.
doi: 10.3390/ma12172834
[8]   CAIQ, SHIY, SHAND, et al.Osteogenic differentiation of MC3T3-E1 cells on poly(l-lactide)/Fe3O4 nanofibers with static magnetic field exposure[J]Mater Sci Eng C, 2015, 166-173.
doi: 10.1016/j.msec.2015.05.002
[9]   ZHAOY, FANT, CHENJ, et al.Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration[J]Colloids Surfs B Biointerfaces, 2019, 70-79.
doi: 10.1016/j.colsurfb.2018.11.003
[10]   SUNS, ZENGH, ROBINSOND B, et al.Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles[J]J Am Chem Soc, 2004, 126( 1): 273-279.
doi: 10.1021/ja0380852
[11]   CHENH, SUNJ, WANGZ, et al.Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stemcells[J]ACS Appl Mater Interfaces, 2018, 10( 51): 44279-44289.
doi: 10.1021/acsami.8b17427
[12]   GOLDK, SLAYB, KNACKSTEDTM, et al.Antimicrobial activity of metal and metal‐oxide basednanoparticles[J]Adv Therap, 2018, 1( 3): 1700033.
doi: 10.1002/adtp.201700033
[13]   GUOX, LIW, LUOL, et al.External magnetic field-enhanced chemo-photothermal combination tumor therapy via iron oxide nanoparticles[J]ACS Appl Mater Interfaces, 2017, 9( 19): 16581-16593.
doi: 10.1021/acsami.6b16513
[14]   WANGQ, CHENB, CAOM, et al.Response of MAPK pathway to iron oxide nanoparticlesin vitro treatment promotes osteogenic differentiation of hBMSCs[J]Biomaterials, 2016, 11-20.
doi: 10.1016/j.biomaterials.2016.02.004
[15]   LUJ W, YANGF, KEQ F, et al.Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors[J]Nanomed Nanotechnol Biol Med, 2018, 14( 3): 811-822.
doi: 10.1016/j.nano.2017.12.025
[16]   ZHANGW, YANGG, WANGX, et al.Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]Adv Mater, 2017, 29( 43): 1703795.
doi: 10.1002/adma.201703795
[17]   HUANGD M, HSIAOJ K, CHENY C, et al.The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles[J]Biomaterials, 2009, 30( 22): 3645-3651.
doi: 10.1016/j.biomaterials.2009.03.032
[18]   LIL, YANGG, LIJ, et al.Cell behaviors on magnetic electrospun poly-D, L-lactide nanofibers[J]Mater Sci Eng C, 2014, 252-261.
doi: 10.1016/j.msec.2013.09.021
[19]   LIUQ, FENGL, CHENZ, et al.Ultrasmall superparamagnetic iron oxide labeled silk fibroin/hydroxyapatite multifunctional scaffold loaded with bone marrow-derived mesenchymal stem cells for bone regeneration[J]Front Bioeng Biotechnol, 2020, 697.
doi: 10.3389/fbioe.2020.00697
[20]   HUS, ZHOUY, ZHAOY, et al.Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats[J/OL]J Tissue Eng Regen Med, 2018, 12( 4): e2085-e2098.
doi: 10.1002/term.2641
[21]   ZHUY, YANGQ, YANGM, et al.Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway[J]ACS Nano, 2017, 11( 4): 3690-3704.
doi: 10.1021/acsnano.6b08193
[22]   ZHUY, LIZ, ZHANGY, et al.The essential role of osteoclast-derived exosomes in magnetic nanoparticle-infiltrated hydroxyapatite scaffold modulated osteoblast proliferation in an osteoporosis model[J]Nanoscale, 2020, 12( 16): 8720-8726.
doi: 10.1039/D0NR00867B
[23]   BAX, HADJIARGYROUM, DIMASIE, et al.The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films[J]Biomaterials, 2011, 32( 31): 7831-7838.
doi: 10.1016/j.biomaterials.2011.06.053
[24]   TANASAE, ZAHARIAC, HUDITAA, et al.Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles[J]Mater Sci Eng C, 2020, 110714.
doi: 10.1016/j.msec.2020.110714
[25]   PAUNI A, POPESCUR C, CALINB S, et al.3D biomimetic magnetic structures for static magnetic field stimulation of osteogenesis[J]Int J Mol Sci, 2018, 19( 2): 495.
doi: 10.3390/ijms19020495
[26]   LIP, ZHANGS, LIK, et al.The promoting effect on pre-osteoblast growth under electrical and magnetic double stimulation based on PEDOT/Fe3O4/PLGA magnetic-conductive bi-functional scaffolds[J]J Mater Chem B, 2018, 6( 30): 4952-4962.
doi: 10.1039/c8tb00985f
[27]   FILIPPIM, DASENB, GUERREROJ, et al.Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells[J]Biomaterials, 2019, 119468.
doi: 10.1016/j.biomaterials.2019.119468
[28]   ROSENA D. Mechanism of action of moderate-intensity static magnetic fields on biological systems[J]Cell Biochem Biophys, 2003, 39( 2): 163-174.
doi: 10.1385/CBB:39:2:163
[29]   KOTANIH, IWASAKAM, UENOS, et al.Magnetic orientation of collagen and bone mixture[J]J Appl Phys, 2000, 87( 9): 6191-6193.
doi: 10.1063/1.372652
[30]   WANGH, TANGX, LIW, et al.Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen Ⅰ scaffold in the presence of low-frequency magnetic field[J]J Mater Sci Mater Med, 2019, 30( 8): 89.
doi: 10.1007/s10856-019-6289-8
[31]   HUANGJ, WANGD, CHENJ, et al.Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field[J]Saudi Pharma-ceutical J, 2017, 25( 4): 575-579.
doi: 10.1016/j.jsps.2017.04.026
[32]   TAMPIERIA, IAFISCOM, SANDRIM, et al.Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process[J]ACS Appl Mater Interfaces, 2014, 6( 18): 15697-15707.
doi: 10.1021/am5050967
[33]   YUANZ, MEMARZADEHK, STEPHENA S, et al.Development of a 3D collagen model for the in vitro evaluation of magnetic-assisted osteogenesis[J]Sci Rep, 2018, 8( 1): 16270.
doi: 10.1038/s41598-018-33455-2
[34]   HUANGZ, HEY, CHANGX, et al.A magnetic iron oxide/polydopamine coating can improve osteogenesis of 3D‐printed porous titanium scaffolds with a static magnetic field by upregulating the TGFβ‐smads pathway[J]Adv Healthcare Mater, 2020, 9( 14): 2000318.
doi: 10.1002/adhm.202000318
[35]   NOMURAS, TAKANO-YAMAMOTOT. Molecular events caused by mechanical stress in bone[J]Matrix Biol, 2000, 19( 2): 91-96.
doi: 10.1016/s0945-053x(00)00050-0
[36]   KATARIVASL G, BIRCHM A, BROOKSR A, et al.Stimulation of human osteoblast differentiation in magneto-mechanically actuated ferromagnetic fiber networks[J]J Clin Med, 2019, 8( 10): 1522.
doi: 10.3390/jcm8101522
[37]   HAOS, MENGJ, ZHANGY, et al.Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization[J]Biomaterials, 2017, 16-25.
doi: 10.1016/j.biomaterials.2017.06.013
[38]   MENGJ, XIAOB, ZHANGY, et al.Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo[J]Sci Rep, 2013, 3( 1): 2655.
doi: 10.1038/srep02655
[1] LU Xixuan,BAO Lisha,PAN Zongfu,GE Minghua. Immunotherapy for anaplastic thyroid carcinoma: the present and future[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 675-684.
[2] QIAN Chenhong,JIANG Liehao,XU Shiying,WANG Jiafeng,TAN Zhuo,XIN Ying,GE Minghua. Advances in targeted therapy for anaplastic thyroid carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 685-693.
[3] ZHOU Jing,WANG Yan,XU Enping. Research progress on application of microhaplotype in forensic genetics[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 777-782.
[4] REN Yuan,CUI Gedan,GAO Yongxiang. Research progress on inflammatory mechanism of primary Sj?gren syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 783-794.
[5] MA Lijuan,WU Shuang,ZHANG Kai,TIAN Mei,ZHANG Hong. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 666-673.
[6] XUAN Zixue,ZHANG Yiwen,PAN Zongfu,ZHENG Xiaowei,HUANG Ping. Natural medicinal ingredients induce tumor ferroptosis and related mechanisms[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 601-606.
[7] QU Wenzheng,ZHUANG Yingliang,LI Xuekun. The roles of epigenetic modifications in neurodegenerative diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 642-650.
[8] SUN Qi,CAO Wei,LUO Jianhong. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 651-658.
[9] SHI Jianrong,MA Wangqian,TANG Huifang. Research progress of phosphodiesterase inhibitors in inflammatory bowel disease treatment[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 659-665.
[10] TANG Yue,KONG Yuanyuan. Hereditary tyrosinemia type Ⅰ: newborn screening, diagnosis and treatment[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 514-523.
[11] LIU Fei,FENG Chunyue,MAO Jianhua,FU Haidong. New-onset and relapsing glomerular diseases related to COVID-19 vaccination[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 524-528.
[12] HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.
[13] HU Mangsha,WEI Shuli,ZHOU Wuyuan,WANG Pingli. Research progress on neonatal Fc receptor and its application[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 537-544.
[14] HU Jingyi,WANG Qingqing,LIU Yang. Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 396-402.
[15] GE Yingzhou,LIU Xinmei,HUANG Hefeng. Advances in the role of silence information regulator family in pathological pregnancy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 335-344.