Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (4): 429-435    DOI: 10.3724/zdxbyxb-2021-0288
    
Genetic screening techniques and diseases for neonatal genetic diseases
HAN Lianshu
Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
Download: HTML( 11 )   PDF(2229KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Neonatal genetic disease is currently screened mainly based on metabolite biochemical technology. The false positive rate of biochemical screening technology is relatively high, and there are certain false negatives, and only few types of diseases can be screened. The genetic techniques have been gradually used for neonatal genetic disease screening in recent years. Gene detection technology includes quantitative PCR (qPCR) and high-throughput sequencing. High-throughput sequencing includes gene panel sequencing, whole-exome sequencing and whole-genome sequencing. At present, qPCR and gene panel sequencing are the main technologies to be used for newborn genetic disease screening. Genetic screening diseases range from single disease such as hearing loss, spinal muscular atrophy and severe combined immunodeficiency to multiple diseases. Besides standards and guidelines for the interpretation of sequence variants proposed by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology in 2015, the interpretation of genetic screening results should also consider biochemical results and other results. The development of newborn genetic screening needs to follow ethical principles, including the ethics of newborn genetic screening as a public health project, the privacy ethics of newborns and their family members, and the ethics of bioinformatics. The development of newborn genetic screening will enable more patients with inherited diseases to receive early diagnosis and treatment and improve their prognosis, which is a milestone in the field of neonatal screening.



Key wordsNeonatal screening      Genetic disease, inborn      Gene      Quantitative PCR      High-throughput sequencing      Review     
Received: 22 June 2021      Published: 01 November 2021
CLC:  R394  
Corresponding Authors: HAN Lianshu   
Cite this article:

HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0288     OR     http://www.zjujournals.com/med/Y2021/V50/I4/429


新生儿遗传病基因筛查技术及相关疾病

新生儿遗传病筛查目前以代谢物生化指标检测为主,检测结果假阳性率较高,且有一定的假阴性,筛查的病种较少。近几年逐步开展的新生儿遗传病筛查基因检测技术包括定量聚合酶链反应技术和高通量测序。高通量测序又分为基因包测序、全外显子组测序和全基因组测序。但目前用于新生儿遗传病筛查的基因技术主要为定量聚合酶链反应技术和基因包测序。新生儿基因筛查病种由单病种筛查如耳聋、脊髓性肌萎缩及重症联合免疫缺陷病等向多病种筛查发展。新生儿基因筛查结果解读除遵循美国医学遗传学与基因组学学会联合分子病理协会在2015年提出的“序列变异解读标准和指南”外,还需要结合生化指标检测及其他检测结果综合分析。新生儿遗传病基因筛查的开展需要遵循伦理原则,包括将新生儿基因筛查作为公共卫生项目的伦理、新生儿及其家庭成员知情选择权和隐私权伦理等。新生儿遗传病基因筛查的开展将使更多的遗传病患者能够早期诊断,改善其预后,在新生儿遗传病筛查领域具有里程碑意义。


关键词: 新生儿筛查,  遗传性疾病, 先天性,  基因,  定量PCR,  高通量测序,  综述 
[1]   ALMANNAIM, MAROMR, SUTTONV R. Newborn screening: a review of history, recent advancements, and future perspectives in the era of next generation sequencing[J]Curr Opin Pediatr, 2016, 28( 6): 694-699.
doi: 10.1097/mop.0000000000000414
[2]   RYCKMANK K, BERBERICHS L, SHCHELOCHKOVO A, et al.Clinical and environmental influences on metabolic biomarkers collected for newborn screening[J]Clin Biochem, 2013, 46( 1-2): 133-138.
doi: 10.1016/j.clinbiochem.2012.09.013
[3]   PENGG, TANGY, GANDOTRAN, et al.Ethnic variability in newborn metabolic screening markers associated with false‐positive outcomes[J]J Inherit Metab Dis, 2020, 43( 5): 934-943.
doi: 10.1002/jimd.12236
[4]   JAMESP M, LEVYH L. The clinical aspects of newborn screening: importance of newborn screening follow-up[J]Ment Retard Dev Disabil Res Rev, 2006, 12( 4): 246-254.
doi: 10.1002/mrdd.20120
[5]   LINY, LIUY, ZHUL, et al.Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency[J]J Inher Metab Dis, 2020, 43( 3): 467-477.
doi: 10.1002/jimd.12206
[6]   张伟然, 赵正言. 新生儿疾病基因筛查研究进展[J]. 中华儿科杂志, 2020, 58(12): 1033-1037
ZHANG Weiran, ZHAO Zhengyan. Advances in genetic screening for neonatal diseases[J]. Chinese Journal of Pediatrics, 2020, 58(12): 1033-1037. (in Chinese)
[7]   WRIGHTC F, FITZPATRICKD R, FIRTHH V. Paediatric genomics: diagnosing rare disease in children[J]Nat Rev Genet, 2018, 19( 5): 253-268.
doi: 10.1038/nrg.2017.116
[8]   LEES Y, OHD Y, HANJ H, et al.Flexible real-time polymerase chain reaction-based platforms for detecting deafness mutations in koreans: a proposed guideline for the etiologic diagnosis of auditory neuropathy spectrum disorder[J]Diagnostics, 2020, 10( 9): 672.
doi: 10.3390/diagnostics10090672
[9]   KRASZEWSKIJ N, KAYD M, STEVENSC F, et al.Pilot study of population-based newborn screening for spinal muscular atrophy in New York state[J]Genet Med, 2018, 20( 6): 608-613.
doi: 10.1038/gim.2017.152
[10]   WANGC, LIUY, CAIF, et al.Rapid screening of MMACHC gene mutations by high‐resolution melting curve analysis[J/OL]Mol Genet Genomic Med, 2020, 8( 6): e1221.
doi: 10.1002/mgg3.1221
[11]   XUA, LVT, ZHANGB, et al.Development and evaluation of an unlabeled probe high-resolution melting assay for detection of ATP7B mutations in Wilson’s disease[J/OL]J Clin Lab Anal, 2017, 31( 4): e22064.
doi: 10.1002/jcla.22064
[12]   PASQUALIMG, DOS SANTOSB A, GIUGLIANIR, et al.Simple and efficient screening of patients with Fabry disease with high resolution melting[J]Clin Biochem, 2018, 160-163.
doi: 10.1016/j.clinbiochem.2018.01.002
[13]   应斌武. 高分辨熔解曲线分析在遗传病分子诊断中的应用[J]. 中华检验医学杂志, 2017, 40(2): 146-148
YING Binwu. Application of high resolution fusion curve analysis in molecular diagnosis of genetic diseases[J]. Chinese Journal of Laboratory Medicine, 2017, 40(2): 146-148. (in Chinese)
[14]   XUEY, ANKALAA, WILCOXW R, et al.Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing[J]Genet Med, 2015, 17( 6): 444-451.
doi: 10.1038/gim.2014.122
[15]   KANNAN-SUNDHARIA, YAND, SAEIDIK, et al.Screening consanguineous families for hearing loss using the miamiotogenes panel[J]Genet Test Mol Biomarkers, 2020, 24( 10): 674-680.
doi: 10.1089/gtmb.2020.0153
[16]   CAMPENV, SOLLARSE S A, THOMASR C, et al.Next generation sequencing in newborn screening in the United Kingdom national health service[J]Int J Neonatal Screen, 2019, 5( 4): 40.
doi: 10.3390/ijns5040040
[17]   PARKK J, PARKS, LEEE, et al.A population-based genomic study of inherited metabolic diseases detected through newborn screening[J]Ann Lab Med, 2016, 36( 6): 561-572.
doi: 10.3343/alm.2016.36.6.561
[18]   ROMANT S, CROWLEYS B, ROCHEM I, et al.Genomic sequencing for newborn screening: results of the NC NEXUS project[J]Am J Hum Genet, 2020, 107( 4): 596-611.
doi: 10.1016/j.ajhg.2020.08.001
[19]   中国医师协会医学遗传医师分会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期医学专业委员会临床遗传学组, 等. 全基因组测序在遗传病检测中的临床应用专家共识[J]. 中华儿科杂志, 2019, 57(6): 419-423
Society of Medical Geneticists, Chinese Medical Doctor Association; Subspecialty Group of Endocrindogic, Hereditary and Metabolic Diseases, the Society of Pedratrics, Chinese Medical Association; Clinical Genetics Group, Adolescent Medicine Committee, Chinese Medical Doctor Association, et al. Consensus on the application of clinical whole genome sequencing in the diagnosis of genetic diseases[J].Chinese Journal of Pediatrics, 2019, 57(6): 419-423. (in Chinese)
[20]   MILLERN A, FARROWE G, GIBSONM, et al.A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases[J]Genome Med, 2015, 7( 1): 100.
doi: 10.1186/s13073-015-0221-8
[21]   HOWARDH C, KNOPPERSB M, CORNELM C, et al.Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes[J]Eur J Hum Genet, 2015, 23( 12): 1593-1600.
doi: 10.1038/ejhg.2014.289
[22]   PHORNPHUTKULC, PADBURYJ. Large scale next generation sequencing and newborn screening: are we ready?[J]J Pediatr, 2019, 9-10.
doi: 10.1016/j.jpeds.2019.01.037
[23]   FRIEDMANJ M, CORNELM C, GOLDENBERGA J, et al.Genomic newborn screening: public health policy considerations and recommendations[J]BMC Med Genomics, 2017, 10( 1): 9.
doi: 10.1186/s12920-017-0247-4
[24]   CEYHAN-BIRSOYO, MURRYJ B, MACHINIK, et al.Interpretation of genomic sequencing results in healthy and ill newborns: results from the babyseq project[J]Am J Hum Genet, 2019, 104( 1): 76-93.
doi: 10.1016/j.ajhg.2018.11.016
[25]   WANGQ, XIANGJ, SUNJ, et al.Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China[J]Genet Med, 2019, 21( 10): 2231-2238.
doi: 10.1038/s41436-019-0481-6
[26]   ZOUY, DAIQ Q, TAOW J, et al.Suspension array-based deafness genetic screening in 53,033 Chinese newborns identifies high prevalence of 109?G>A in GJB2[J]Int J Pediatr Otorhinolaryngol, 2019, 109630.
doi: 10.1016/j.ijporl.2019.109630
[27]   LINY, LINC H, YINX, et al.Newborn screening for spinal muscular atrophy in China using DNA mass spectrometry[J]Front Genet, 2019, 1255.
doi: 10.3389/fgene.2019.01255
[28]   TANM, BAIY, ZHANGX, et al.Early genetic screening uncovered a high prevalence of thalassemia among 18?309 neonates in Guizhou, China[J]Clin Genet, 2021, 99( 5): 704-712.
doi: 10.1111/cge.13923
[29]   孙碧君, 孙金峤. 新生儿重症联合免疫缺陷病筛查研究进展[J]. 中华儿科杂志, 2017, 55(1): 70-73
SUN Bijun, SUN Jinqiao. Development of newborn screening for severe combined immunodeficiency[J]. Chinese Journal of Pediatrics, 2017, 55(1): 70-73. (in Chinese)
[30]   CHIENY H, CHIANGS C, CHANGK L, et al.Incidence of severe combined immunodeficiency through newborn screening in a Chinese population[J]J Formo Med Assoc, 2015, 114( 1): 12-16.
doi: 10.1016/j.jfma.2012.10.020
[31]   FLEIGET, BURGGRAFS, CZIBEREL, et al.Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis[J]Eur J Hum Genet, 2020, 28( 2): 193-201.
doi: 10.1038/s41431-019-0521-3
[32]   IBARRA-GONZáLEZI, FERNáNDEZ-LAINEZC, GUILLéN-LóPEZS, et al.Molecular analysis using targeted next generation DNA sequencing and clinical spectrum of Mexican patients with isovaleric acidemia[J]Clinica Chim Acta, 2020, 216-221.
doi: 10.1016/j.cca.2019.10.041
[33]   ADHIKARIA N, GALLAGHERR C, WANGY, et al.The role of exome sequencing in newborn screening for inborn errors of metabolism[J]Nat Med, 2020, 26( 9): 1392-1397.
doi: 10.1038/s41591-020-0966-5
[34]   LUOX, SUNY, XUF, et al.A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns[J]Ann Transl Med, 2020, 8( 17): 1058.
doi: 10.21037/atm-20-1147
[35]   SMONA, REPIC LAMPRETB, GROSELJU, et al.Next generation sequencing as a follow-up test in an expanded newborn screening programme[J]Clin Biochem, 2018, 48-55.
doi: 10.1016/j.clinbiochem.2017.10.016
[36]   敖桢桢, 王 静, 李思涛, 等. 串联质谱联合二代测序在2万例新生儿遗传病筛查分析中的应用[J]. 中华实用儿科临床杂志, 2020, 35(24): 1881-1885
AO Zhenzhen, WANG Jing, LI Sitao, et al. Application of tandem mass spectrometry combined with second-generation sequencing in screening and analysis of 20,000 neonatal genetic diseases[J]. Chinese Clinical Journal of Practical Pediatrics, 2020, 35(24): 1881-1885. (in Chinese)
[37]   RICHARDSS, AZIZN, BALES, et al.Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]Genet Med, 2015, 17( 5): 405-423.
doi: 10.1038/gim.2015.30
[38]   中华儿科杂志编辑委员会. 儿童遗传病遗传检测临床应用专家共识[J]. 中华儿科杂志, 2019, 57(3): 172-176
The Editorial Board, Chinese Journal of Pediatrics. Consensus recommendations for the clinical application of genetic testing for children’s genetic diseases[J]. Chinese Journal of Pediatrics, 2019, 57(3): 172-176. (in Chinese)
[39]   KALIAS S, ADELMANK, BALES J, et al.Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics[J]Genet Med, 2017, 19( 2): 249-255.
doi: 10.1038/gim.2016.190
[40]   BOTKINJ R, BELMONTJ W, BERGJ S, et al.Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents[J]Am J Hum Genet, 2015, 97( 1): 6-21.
doi: 10.1016/j.ajhg.2015.05.022
[41]   JOHNSTONJ, LANTOSJ D, GOLDENBERGA, et al.Sequencing newborns: a call for nuanced use of genomic technologies[J]Hastings Cent Rep, 2018, 48( Suppl 2): S2-S6.
doi: 10.1002/hast.874
[1] HU Jingyi,WANG Qingqing,LIU Yang. Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 396-402.
[2] GE Yingzhou,LIU Xinmei,HUANG Hefeng. Advances in the role of silence information regulator family in pathological pregnancy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 335-344.
[3] SHUI Jian,WANG Haichen,TAO Xiaoyan,MIN Changhang,LI Jun,ZOU Mingxiang. Relationship of biofilm-forming ability of Pseudomonas aeruginosa with swimming motility, twitching motility and virulence gene distribution[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 345-351.
[4] WANG Jintao,HUANG Lei,WEI Lili,CHEN Wei. Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 383-389.
[5] ZHUANG Wenwen,YANG Yongqi,LI Hongliang,LIANG Jingyan. Research advance of Nrf2 on atherosclerosis by regulating vascular smooth muscle cell[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 390-395.
[6] ZHU Feng,XIANG Yingchun,ZENG Linghui. Progress on mitochondrial silence information regulator family in epilepsy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 403-408.
[7] MAO Hongmei,SUN Yi. Primary cilium and its role in tumorigenesis[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 245-260.
[8] REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.
[9] YING Yingchao,JIANG Peifang. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 267-276.
[10] KUANG Wenjing,LUO Xiaobo,WANG Jiongke,ZENG Xin. Research progress on Melkersson-Rosenthal syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 148-154.
[11] ZHANG Yuting,YUAN Peiyang,JIANG Han,QIU Xuemei,WANG Jiongke,LUO Xiaobo,DAN Hongxia,ZHOU Yu,ZENG Xin,JIANG Lu,CHEN Qianming. Application of medical magnifying loupes in diagnosis of oral mucosal diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 205-211.
[12] WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.
[13] WANG Yahui,HAO Yilong,TANG Fan,CHEN Qianming. Immune mechanisms involved in the coexistence of oral lichen planus and autoimmune thyroid diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 222-228.
[14] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[15] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.