Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (4): 487-493    DOI: 10.3724/zdxbyxb-2021-0275
    
Application of genetic screening processor in screening neonatal glucose-6-phosphate dehydrogenase deficiency
MIAO Haixia1(),ZHANG Yu2,FANG Kexin1,SHI Yezhen2,ZHANG Ting1,CHEN Rongqing2,WU Dingwen1,YANG Rulai1,HUANG Xinwen1,*()
1. Department of Genetics and Metabolism, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China;
2. Zhejiang Biosan Biochemical Technology Co., Ltd., Hangzhou 310012, China
Download: HTML( 1 )   PDF(2392KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To evaluate the performance of genetic screening processor (GSP analyzer) in neonatal screening for glucose-6-phosphate dehydrogenase (G6PD)deficiency. Methods:The accuracy and precision of GSP analyzer was evaluated with the control materials from National Center for Clinical Laboratories and the low and high quality G6PD control kit (fluorescence analysis). GSP analyzer and semi-automatic fluorescence immunoanalyzer (1420 analyzer) were simultaneously used to detect 2622 neonatal screening samples and 41 confirmed samples to analyze the correlation and consistency of the test results; 78 floating samples and 78 non-floating samples were detected to compare the result. A total of 1?100?384 neonatal screening samples from January 2017 to December 2018 and 855?856 neonatal screening samples from January 2019 to December 2020 were detected with 1420 analyzer and GSP analyzer, respectively. Referring to the percentile method and the expert consensus, the new cut-off value of GSP analyzer for G6PD deficiency in screening was established. Results: The relative bias of GSP analyzer in detecting G6PD was 0.71%–4.23%; the intra assay precision was 4.34%–4.91%, the inter assay precision was 0.85%–2.12%, and the total coefficient of variation was 5.44%–5.72%. There was a significant positive correlation between G6PD activity detected by GSP analyzer and 1420 analyzer (r=0.740, P<0.01). Forty-one clinical confirmed patients were identified by both 1420 analyzer and GSP analyzer (Kappa=0.945). The G6PD activity in floating dry blood spots detected by 1420 analyzer was significantly lower than that in non-floating dry blood spots (P<0.05), but there was no significant difference in G6PD activity between floating and non-floating dry blood spots detected by GSP analyzer (P>0.05). The sensitivities of GSP analyzer and 1420 analyzer in screening G6PD deficiency were both 100.00%, and the specificities were both more than 99.80%. Compared with 1420 analyzer, the positive predictive value, positive rate and prevalence of G6PD deficiency detected by GSP analyzer were increased, and the false positive rate was decreased (allP<0.01). The new cut-off value was 26.1 U/dL for male and 29.1 U/dL for female according to the 99.1% percentile of the population.Conclusion: GSP analyzer has better detection performance with high automation, efficiency and throughput, which can be used in large-scale screening for neonatal G6PD deficiency.



Key wordsNeonatal screening      Fluorescence immunoassay      Glucose-6-phosphate dehydrogenase deficiency      Cut-off value     
Received: 09 April 2021      Published: 01 November 2021
CLC:  R446.1  
Corresponding Authors: HUANG Xinwen     E-mail: hamhx@zju.edu.cn;6305022@zju.edu.cn
Cite this article:

MIAO Haixia,ZHANG Yu,FANG Kexin,SHI Yezhen,ZHANG Ting,CHEN Rongqing,WU Dingwen,YANG Rulai,HUANG Xinwen. Application of genetic screening processor in screening neonatal glucose-6-phosphate dehydrogenase deficiency. J Zhejiang Univ (Med Sci), 2021, 50(4): 487-493.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0275     OR     http://www.zjujournals.com/med/Y2021/V50/I4/487


全自动荧光免疫分析仪在新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查中的应用

目的:分析全自动荧光免疫分析仪(GSP分析仪)检测新生儿葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症的性能。方法:应用GSP分析仪检测国家卫生健康委临床检验中心室间质量评价质控品和G6PD试剂盒(荧光分析法)的低、高质控品,计算准确度和精密度。采用GSP分析仪和半自动荧光免疫分析仪(1420分析仪)同步检测2622例新生儿筛查标本和41例确诊患儿的标本,分析检测结果的相关性和一致性;采用GSP分析仪和1420分析仪检测漂浮和未漂浮标本各78例,比较检测结果差异;采用1420分析仪和GSP分析仪分别检测2017年1月至2018年12月1?100?384名新生儿筛查标本及2019年1月至2020年12月855?856名新生儿筛查标本,比较两种仪器的筛查效能。对目前使用的切值(26?U/dL)的合理性进行评估,并通过百分位数法,以第99.1百分位建立GSP分析仪筛查G6PD缺乏症的新切值。结果:GSP分析仪检测5个不同浓度室间质控品的检测值与靶值的相对偏倚为0.71%~4.23%,检测G6PD测定试剂盒质控品的批内精密度为4.34%~4.91%,批间精密度为0.85%~2.12%,总变异系数为5.44%~5.72%,均符合实验要求。GSP分析仪和1420分析仪检测的G6PD活性存在明显的正相关(r=0.740,P<0.01),均能筛查出41例确诊患儿,筛查的一致性较好(Kappa=0.945)。1420分析仪检测漂浮干血斑中的G6PD活性明显低于未漂浮干血斑中的G6PD活性(P<0.05),而GSP分析仪检测漂浮和未漂浮干血斑中的G6PD活性差异无统计学意义(P>0.05)。GSP分析仪和1420分析仪筛查G6PD缺乏症的敏感度均为100.00%,且特异度均在99.80%以上。与1420分析仪比较,GSP分析仪筛查G6PD缺乏症的阳性预测值、初筛阳性率和诊断率均上升,假阳性率下降(均P<0.01)。根据人群第99.1百分位建立新切值,男性为26.1?U/dL,女性为29.1?U/dL。结论:GSP分析仪检测性能良好,筛查效率高,更有利于疾病的检出,可用于临床新生儿G6PD缺乏症的大规模筛查。


关键词: 新生儿筛查,  荧光免疫分析,  葡萄糖-6-磷酸脱氢酶缺乏症,  切值 

GSP分析仪

1420分析仪

合计

阳性

阴性

阳性

53

2

55

阴性

4

2604

2608

合计

57

2606

2663

Table 1 Consistency analysis of G6PD deficiency screening by GSP analyzer and 1420 analyzer

筛查方法

n

初筛阳性例数

初筛阳性率(%)

诊断例数

诊断率(%)

假阳性率(%)

阳性预测值(%)

敏感度(%)

特异度(%)

1420分析仪

?

男性

579?993

5104

0.88

3973

0.69

0.20

77.84

100.00

99.80

女性

520?391

1349

0.26

501

0.10

0.18

37.14

100.00

99.84

合计

1?100?384

6453

0.59

4474

0.41

0.18

69.33

100.00

99.82

GSP分析仪

?

男性

449?595

4017

0.89

3340

0.74**

0.15**

83.15**

100.00

99.85

女性

406?261

1378

0.34**

630

0.16**

0.16**

45.72**

100.00

99.82

合计

855?856

5395

0.63**

3970

0.46**

0.17**

73.59**

100.00

99.83

Table 2 G6PD deficiency screening efficiency of GSP analyzer and 1420 analyzer
Figure 1 Distribution of G6PD activities in male and female samples detected by GSP analyzer
[1]   BEUTLERE. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective[J]Blood, 2008, 111( 1): 16-24.
doi: 10.1182/blood-2007-04-077412
[2]   中华人民共和国卫生部. 新生儿疾病筛查技术规范(2010年版)[A/OL]. (2010-11-10)[2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc
Ministry of Health of the People’s Republic of China. Technical guide of newborn screening in China (2010) [A/OL]. (2010-11-10) [2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798.doc. (in Chinese)
[3]   中华预防医学会出生缺陷预防与控制专业委员会新生儿筛查学组, 中国医师协会医学遗传医师分会临床生化遗传专业委员会, 中国医师协会青春期医学专业委员会临床遗传学组. 葡萄糖-6-磷酸脱氢酶缺乏症新生儿筛查、诊断和治疗专家共识[J]. 中华儿科杂志, 2017, 55(6): 411-414
The Subspecialty Group of Newborn Screening, Society of Birth Defects Prevention and Control, Chinese Preventive Medicine Association, The Subspecialty Committee of Clinical Biochemical Genetics, Society of Medical Genetics, Chinese Medical Doctor Association, The Subspecialty Group of Clinical Genetics, Society of Adolescent Medicine, Chinese Medical Doctor Association. Expert consensus on neonatal screening, diagnosis and treatment of glucose-6-phosphate dehydrogenasedeficiency[J]. Chinese Journal of Pediatrics, 2017, 55(6): 411-414. (in Chinese)
[4]   Clinical and Laboratory Standards Institute. EP15-A2. User verification of performance for precision and trueness; Approved Guideline-Second Edition[S/OL]. [2021-02-01]. https://webstore.ansi.org/standards/clsi/clsiep15a2
[5]   Clinical and Laboratory Standards Institute. EP05-A2. Evaluation of precision performance of quantitative measurement methods; approved guideline-second edition[S/OL]. [2021-02-01]. https://webstore.ansi.org/standards/clsi/clsiep05a2?gclid=EAIaIQobChMIgdebuPfO8gIVAcuWCh2VfgzlEAAYASAAEgJOofD_BwE
[6]   Clinical and Laboratory Standards Institute. How to define and determine reference intervals in the clinical laboratory. CLSI C28?A2 Ed. 2[S]. Wayne, PA: CLSI, 2000
[7]   国家卫生健康委临床检验中心新生儿疾病筛查室间质评专家委员会. 新生儿葡萄糖-6-磷酸脱氢酶缺乏症筛查与诊断实验室检测技术专家共识[J]. 中华检验医学杂志, 2019, 42(3): 181-185
Expert Committee for Inter Room Quality Evaluation of Neonatal Disease Screening in Clinical Laboratory Center of National Health Commission. Consensus of experts on detection technology in neonatal glucose-6-phosphate dehydrogenase deficiency screening and diagnosis laboratory[J].Chinese Journal of Laboratory Medicine, 2019, 42 (3): 181-185. (in Chinese)
[8]   FINGERHUTR, TORRESANIT. Evaluation of the genetic screening processor (GSP) for newborn screening[J]Anal Methods, 2013, 5( 18): 4769.
doi: 10.1039/c3ay40593a
[9]   DE CASTROS M, FILIPPONL, SOUZAA C, et al.Evaluation of the genetic screening processor for the performance of newborn screening tests[J]J Inborn Errors Metab Screening, 2016, 1-5.
doi: 10.1177/2326409816669370
[10]   梁晓威, 蒋 涛, 程 威, 等. 全自动免疫荧光分析仪检测苯丙氨酸的性能验证[J]. 南京医科大学学报(自然科学版), 2018, 38(5): 699-702
LIANG Xiaowei, JIANG Tao, CHENG Wei, et al. Performance verification of automatic immunofluorescence analyzer for the detection of phenylalanine[J]. Journal of Nanjing Medical University (Natural Science Edition), 2018, 38(5): 699-702. (in Chinese)
[11]   田国力, 王燕敏, 周 卓, 等. 全自动新生儿疾病筛查系统的性能评价[J]. 检验医学, 2017, 32(7): 633-636
TIAN Guoli, WANG Yanmin, ZHOU Zhuo, et al. Performance evaluation of automatic neonatal disease screening system[J]. Laboratory Medicine, 2017, 32(7): 633-636. (in Chinese)
[12]   LEYB, ALAMM S, O’DONNELLJ J, et al.A comparison of three quantitative methods to estimate G6PD activity in the chittagong hill tracts, bangladesh[J/OL]PLoS One, 2017, 12( 1): e0169930.
doi: 10.1371/journal.pone.0169930
[13]   ANANTASOMBOONP, CHANDAM, JUGNAM-ANGW, et al.Evaluating the performance of automated UV enzymatic assay for screening of glucose 6‐phosphate dehydrogenase deficiency[J]Int J Lab Hematol, 2019, 41( 2): 192-199.
doi: 10.1111/ijlh.12943
[14]   FLORESS R, HALLE M, DE JESúSV R. Glucose-6-phosphate dehydrogenase enzyme stability in filter paper dried blood spots[J]Clin Biochem, 2017, 50( 15): 878-881.
doi: 10.1016/j.clinbiochem.2017.05.003
[15]   ALAMM S, KIBRIAM G, JAHANN, et al.Field evaluation of quantitative point of care diagnostics to measure glucose-6-phosphate dehydrogenase activity[J/OL]PLoS One, 2018, 13( 11): e0206331.
doi: 10.1371/journal.pone.0206331
[16]   JIANGW Y, YUG L, LIUP, et al.Structure and function of glucose-6-phosphate dehydrogenase-deficient variants in Chinese population[J]Hum Genet, 2006, 119( 5): 463-478..
doi: 10.1007/s00439-005-0126-5
[17]   KAPLANM, BEUTLERE, VREMANH J, et al.Neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes[J]Pediatrics, 1999, 104( 1): 68-74.
doi: 10.1542/peds.104.1.68
[18]   KAPLAN M, HAMMERMAN C, VREMAN H J. Acute haemolysis and severe neonatal hyper-bilirubinemia in glucose-6-phosphate dehydrogenase deficient heterozygote[J]. J Pediatr, 2001, 139(1): 137-140
[19]   AINOON O, ALAWIYAH A, YU Y H, et al. Semiquantitative screening test for G6PD deficiency detects severe deficiency but misses a substantial proportion of partially-deficient females[J]. Southeast Asian J Trop Med Public Health, 2003, 34(2): 405-414
[20]   FUC, LUOS, LIQ, et al.Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China: determination of optimal cutoff value to identify heterozygous female neonates[J]Sci Rep, 2018, 8( 1): 833.
doi: 10.1038/s41598-017-17667-6
[1] HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.
[2] YU Yue,LING Shiying,SHUAI Ruixue,QIU Wenjuan,ZHANG Huiwen,LIANG Lili,JI Wenjun,LIU Yuchao,GU Xuefan,HAN Lianshu. Clinical features and outcomes of patients with cblC type methylmalonic acidemia carrying MMACHC gene c.609G>A mutation[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 436-443.
[3] ZHOU Duo,YE Meiling,HU Zhenzhen,ZHANG Yu,ZHU Lin,YANG Rulai,HUANG Xinwen. Screening of multiple acyl-CoA dehydrogenase deficiency in newborns and follow-up of patients[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 454-462.
[4] TANG Chengfang,TAN Minyi,XIE Ting,TANG Fang,LIU Sichi,WEI Qingxiu,LIU Jilian,HUANG Yonglan. Screening for neonatal inherited metabolic disorders by tandem mass spectrometry in Guangzhou[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 463-471.
[5] YANG Chiju,SHI Caihong,ZHOU Cheng,WAN Qiuhua,ZHOU Yanbin,CHEN Xigui,JIN Xianlian,HUANG Chenggang,XU Peng. Screening and follow-up results of fatty acid oxidative metabolism disorders in 608 818 newborns in Jining, Shandong province[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 472-480.
[6] XU Weize,YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang. Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 548-555.
[7] HU Zhenzhen,YANG Jianbin,HU Lingwei,ZHAO Yunfei,ZHANG Chao,YANG Rulai,HUANG Xinwen. Screening and clinical analysis of isovaleric acidemia newborn in Zhejiang province[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 556-564.
[8] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[9] WU Dingwen,LU Bin,YANG Jianbin,YANG Rulai,HUANG Xinwen,TONG Fan,ZHENG Jing,ZHAO Zhengyan. Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 390-396.
[10] TONG Fan,YANG Rulai,LIU Chang,WU Dingwen,ZHANG Ting,HUANG Xinwen,HONG Fang,QIAN Guling,HUANG Xiaolei,ZHOU Xuelian,SHU Qiang,ZHAO Zhengyan. Screening for hereditary tyrosinemia and genotype analysis in newborns[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 459-464.
[11] HUANG Xinwen, ZHANG Yu, HONG Fang, ZHENG Jing, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for amino acid metabolic disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 233-239.
[12] ZHU Hui, MIAO Zhengyou, QIAN Yeqing, LI Hongge, JIN Jinglei, HE Jing, DONG Minyue. Detection of cell-free fetal DNA in maternal plasma for noninvasive prenatal screening of fetal chromosomal aneuploidies in women of advanced maternal age[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 256-261.
[13] HONG Fang, HUANG Xinwen, ZHANG Yu, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for newborn organic aciduria in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 240-247.
[14] ZHENG Jing, ZHANG Yu, HONG Fang, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan, HUANG Xinwen. Screening for fatty acid oxidation disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 248-255.
[15] LI Enshu, YE Xiaoqun, FANG Li, YE Yinghui. Effect of oxygen concentration on outcome of in-vitro fertilization-embryo transfer[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 290-294.