|
|
Immunotherapy for anaplastic thyroid carcinoma: the present and future |
LU Xixuan1,2,BAO Lisha1,2,PAN Zongfu2,3,*( ),GE Minghua1,2,*( ) |
1. Department of Head and Neck Surgery, Center of Otolaryngology, Head and Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China; 2. Zhejiang Provincial Key Laboratory of Endocrine Gland Diseases, Hangzhou 310014, China; 3. Department of Pharmacy, Clinical Pharmacy Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China |
|
|
Abstract Anaplastic thyroid carcinoma (ATC) is the most malignant tumor of endocrine system, which is an urgent medical problem to be solved. At present, immunotherapy studies on ATC mainly include cutting off the recruitment of tumor-associated macrophage (TAM), inducing the reprogramming of TAM and restoring its phagocytic function, targeting related immune checkpoints on T cells and natural killer cells, tumor vaccines based on oncolytic viruses and dendritic cells, and adoptive immunotherapy. Among them, immunotherapy strategies represented by targeted blocking of programmed death-1/programmed death ligand-1 at immune checkpoint have been preliminarily confirmed to benefit ATC patients, especially the combination of molecular targeted inhibitors and immunotherapy has shown excellent therapeutic effects. Due to the great heterogeneity of ATC, it is expected to provide more therapeutic strategies for patients of ATC by carrying out various immunotherapy studies including biological, immune and cellular therapies and exploring the therapeutic potential of the next generation of immune checkpoint inhibitors. This article reviews the potential immunotherapeutic targets of ATC and the progress of immunotherapy.
|
Received: 10 August 2021
Published: 22 March 2022
|
|
Corresponding Authors:
PAN Zongfu,GE Minghua
E-mail: geminghua@hmc.edu.cn
|
甲状腺未分化癌免疫治疗的现状及未来
甲状腺未分化癌(ATC)是恶性程度最高的内分泌系统肿瘤,是当前亟待攻克的医学难题。目前,针对ATC的免疫治疗研究主要包括阻断肿瘤相关巨噬细胞(TAM)的招募、诱导TAM重编程以及恢复其吞噬功能;靶向T淋巴细胞及自然杀伤细胞的相关免疫逃逸检查点;基于溶瘤病毒和树突状细胞的肿瘤疫苗以及过继免疫治疗。其中,以靶向阻断免疫检查点程序性死亡蛋白1/程序性死亡蛋白配体1为代表的免疫治疗策略已初步证实对ATC患者有获益,尤其是分子靶向抑制剂联合免疫治疗具有极佳的治疗效果。由于ATC存在极大的异质性,针对ATC开展包括生物、免疫或细胞治疗等多种免疫治疗研究,并探索下一代免疫检查点抑制剂对ATC的治疗潜力,有望为ATC患者提供更丰富的治疗策略。本文综述了ATC的免疫治疗潜在靶点以及相关的免疫疗法进展。
关键词:
甲状腺未分化癌,
免疫逃逸,
临床研究,
免疫治疗,
综述
|
|
[1] |
BRAYF, FERLAYJ, SOERJOMATARAMI, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA-Cancer J Clin, 2018, 68( 6): 394-424.
doi: 10.3322/caac.21492
|
|
|
[2] |
ONODAN, SUGITANII, ITOK I, et al.Evaluation of the 8th edition TNM classification for anaplastic thyroid carcinoma[J]Cancers, 2020, 12( 3): 552.
doi: 10.3390/cancers12030552
|
|
|
[3] |
CARCANGIUM L, STEEPERT, ZAMPIG, et al.Anaplastic thyroid carcinoma: a study of 70 cases[J]Am J Clin Pathol, 1985, 83( 2): 135-158.
doi: 10.1093/ajcp/83.2.135
|
|
|
[4] |
DAVIESL, WELCHH G. Increasing incidence of thyroid cancer in the United States, 1973–2002[J]JAMA, 2006, 295( 18): 2164.
doi: 10.1001/jama.295.18.2164
|
|
|
[5] |
KEBEBEWE, GREENSPANF S, CLARKO H, et al.Anaplastic thyroid carcinoma[J]Cancer, 2005, 103( 7): 1330-1335.
doi: 10.1002/cncr.20936
|
|
|
[6] |
FAGINJ A, WELLSS A. Biologic and clinical perspectives on thyroid cancer[J]N Engl J Med, 2016, 375( 11): 1054-1067.
doi: 10.1056/NEJMra1501993
|
|
|
[7] |
KUNSTMANJ W, JUHLINC C, GOHG, et al.Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing[J]Hum Mol Genet, 2015, 24( 8): 2318-2329.
doi: 10.1093/hmg/ddu749
|
|
|
[8] |
AHNJ, JINM, SONGE, et al.Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry[J]Thyroid, 2021, 31( 1): 61-67.
doi: 10.1089/thy.2020.0312
|
|
|
[9] |
KIMD I, KIME, KIMY A, et al.Macrophage densities correlated with CXC chemokine receptor 4 expression and related with poor survival in anaplastic thyroid cancer[J]Endocrinol Metab, 2016, 31( 3): 469-475.
doi: 10.3803/EnM.2016.31.3.469
|
|
|
[10] |
Chávez-GalánL, OLLEROSM L, VESIND, et al.Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages[J]Front Immunol, 2015, 263.
doi: 10.3389/fimmu.2015.00263
|
|
|
[11] |
CAILLOUB, TALBOTM, WEYEMIU, et al.Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma[J/OL]PLoS One, 2011, 6( 7): e22567.
doi: 10.1371/journal.pone.0022567
|
|
|
[12] |
CHOJ W, KIMW W, LEEY M, et al.Impact of tumor-associated macrophages and BRAFV600E mutation on clinical outcomes in patients with various thyroid cancers[J]Head Neck, 2019, 41( 3): 686-691.
doi: 10.1002/hed.25469
|
|
|
[13] |
NEUBERTN J, SCHMITTNAEGELM, BORDRYN, et al.T cell-induced CSF1 promotes melanoma resistance to PD1 blockade[J]Sci Transl Med, 2018, 10( 436): eaan3311.
doi: 10.1126/scitranslmed.aan3311
|
|
|
[14] |
EDWARDS VD K, WATANABE-SMITHK, ROFELTYA, et al.CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells[J]Blood, 2019, 133( 6): 588-599.
doi: 10.1182/blood-2018-03-838946
|
|
|
[15] |
LENZOJ C, TURNERA L, COOKA D, et al.Control of macrophage lineage populations by CSF‐1 receptor and GM‐CSF in homeostasis and inflammation[J]Immunol Cell Biol, 2012, 90( 4): 429-440.
doi: 10.1038/icb.2011.58
|
|
|
[16] |
MINI M, SHEVLINE, VEDVYASY, et al.CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors[J]Clin Cancer Res, 2017, 23( 24): 7569-7583.
doi: 10.1158/1078-0432.CCR-17-2008
|
|
|
[17] |
U.S. National Library of Medicine. ClinicalTrials. gov.A combination clinical study of PLX3397 and pembrolizumab to treat advanced melanoma and other solid tumors[EB/OL]. (2019-10-09)[2020-03-05]. https://clinicaltrials.gov/ct2/show/NCT02452424
|
|
|
[18] |
SALAJEGHEH A, VOSGHA H, RAHMAN M A, et al. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma[J]. Hum Pathol, 2016, 51: 75-85
|
|
|
[19] |
MONNEYL, SABATOSC A, GAGLIAJ L, et al.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]Nature, 2002, 415( 6871): 536-541.
doi: 10.1038/415536a
|
|
|
[20] |
MATSUMOTOK, EMAM. Roles of VEGF-A signalling in development, regeneration, and tumours[J]J Biochem, 2014, 156( 1): 1-10.
doi: 10.1093/jb/mvu031
|
|
|
[21] |
ANTONELLIA, FERRARIS M, FALLAHIP. Current and future immunotherapies for thyroid cancer[J]Expert Rev Anticancer Ther, 2018, 18( 2): 149-159.
doi: 10.1080/14737140.2018.1417845
|
|
|
[22] |
TANGX, AMARS. p53 suppresses CCL2-induced subcutaneous tumor xenograft[J]Tumor Biol, 2015, 36( 4): 2801-2808.
doi: 10.1007/s13277-014-2906-9
|
|
|
[23] |
LIMS Y, YUZHALINA E, GORDON-WEEKSA N, et al.Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J]Oncotarget, 2016, 7( 19): 28697-28710.
doi: 10.18632/oncotarget.7376
|
|
|
[24] |
LIX, YAOW, YUANY, et al.Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]Gut, 2017, 66( 1): 157-167.
doi: 10.1136/gutjnl-2015-310514
|
|
|
[25] |
BANERJEES, HALDERK, GHOSHS, et al.The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ[J/OL]Oncoimmunology, 2015, 4( 3): e995559.
doi: 10.1080/2162402X.2014.995559
|
|
|
[26] |
RYDERM, GILDM, HOHLT M, et al.Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression[J/OL]PLoS One, 2013, 8( 1): e54302.
doi: 10.1371/journal.pone.0054302
|
|
|
[27] |
DOWNEYC M, AGHAEIM, SCHWENDENERR A, et al.DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization[J/OL]PLoS One, 2014, 9( 6): e99988.
doi: 10.1371/journal.pone.0099988
|
|
|
[28] |
LIZOTTEP H, BAIRDJ R, STEVENSC A, et al.Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis[J/OL]Oncoimmunology, 2014, 3( 5): e28926.
doi: 10.4161/onci.28926
|
|
|
[29] |
TRAHTEMBERGU, MEVORACHD. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells[J]Front Immunol, 2017, 1356.
doi: 10.3389/fimmu.2017.01356
|
|
|
[30] |
VEILLETTEA, CHENJ. SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J]Trends Immunol, 2018, 39( 3): 173-184.
doi: 10.1016/j.it.2017.12.005
|
|
|
[31] |
SCHüRCHC M, ROELLIM A, FORSTERS, et al.Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy[J]Thyroid, 2019, 29( 7): 979-992.
doi: 10.1089/thy.2018.0555
|
|
|
[32] |
ADVANIR, FLINNI, POPPLEWELLL, et al.CD47 blockade by hu5F9-G4 and rituximab in non-hodgkin’s lymphoma[J]N Engl J Med, 2018, 379( 18): 1711-1721.
doi: 10.1056/NEJMoa1807315
|
|
|
[33] |
CICCARESEC, IACOVELLIR, BRIAE, et al.The incidence and relative risk of pulmonary toxicity in patients treated with anti-PD1/PD-L1 therapy for solid tumors: a meta-analysis of current studies[J]Immunotherapy, 2017, 9( 7): 579-587.
doi: 10.2217/imt-2017-0018
|
|
|
[34] |
TOPALIANS L, TAUBEJ M, ANDERSR A, et al.Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]Nat Rev Cancer, 2016, 16( 5): 275-287.
doi: 10.1038/nrc.2016.36
|
|
|
[35] |
GIANNINIR, MORETTIS, UGOLINIC, et al.Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-Like and a PDTC-like[J]J Clin Endocrinol Metab, 2019, 104( 8): 3557.
doi: 10.1210/jc.2018-01167
|
|
|
[36] |
BRAUNERE, GUNDAV, VANDEN BORREP, et al.Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer[J]Oncotarget, 2016, 7( 13): 17194-17211.
doi: 10.18632/oncotarget.7839
|
|
|
[37] |
CAPDEVILAJ, WIRTHL J, ERNSTT, et al.PD-1 blockade in anaplastic thyroid carcinoma[J]J Clin Oncol, 2020, 38( 23): 2620-2627.
doi: 10.1200/JCO.19.02727
|
|
|
[38] |
CHINTAKUNTLAWARA V, YINJ, FOOTER L, et al.A phase 2 study of pembrolizumab combined with chemoradiotherapy as initial treatment for anaplastic thyroid cancer[J]Thyroid, 2019, 29( 11): 1615-1622.
doi: 10.1089/thy.2019.0086
|
|
|
[39] |
CAROSELLAE D, PLOUSSARDG, LEMAOULTJ, et al.A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G[J]Eur Urology, 2015, 68( 2): 267-279.
doi: 10.1016/j.eururo.2015.02.032
|
|
|
[40] |
DIERKSC, SEUFERTJ, AUMANNK, et al.Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]Thyroid, 2021, 31( 7): 1076-1085.
doi: 10.1089/thy.2020.0322
|
|
|
[41] |
IYERP C, DADUR, GULE-MONROEM, et al.Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma[J]J Immunother Cancer, 2018, 6( 1): 68.
doi: 10.1186/s40425-018-0378-y
|
|
|
[42] |
TUCCILLIC, BALDINIE, SORRENTIS, et al.CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers[J]Int J Endocrinol, 2018, 1742951.
doi: 10.1155/2018/1742951
|
|
|
[43] |
CALVO TARDóNM, ALLARDM, DUTOITV, et al.Peptides as cancer vaccines[J]Curr Opin Pharmacol, 2019, 20-26.
doi: 10.1016/j.coph.2019.01.007
|
|
|
[44] |
U.S. National Library of Medicine. ClinicalTrials. gov. Nivolumab plus ipilimumab in thyroid cancer[EB/OL]. (2017-08-11)[2021-07-19]. https://clinicaltrials.gov/ct2/show/NCT03246958
|
|
|
[45] |
HARJUNP??H, GUILLEREYC. TIGIT as an emerging immune checkpoint[J]Clin Exp Immunol, 2020, 200( 2): 108-119.
doi: 10.1111/cei.13407
|
|
|
[46] |
U.S. National Library of Medicine. ClinicalTrials. gov. COM902 (a tigit inhibitor) in subjects with advanced malignancies[EB/OL]. (2020-04-21)[2021-10-05]. https://clinicaltrials.gov/ct2/show/results/NCT04354246
|
|
|
[47] |
U.S. National Library of Medicine. ClinicalTrials. gov. COM701 in combination with BMS-986207 and nivolumab in subjects with advanced solid tumors[EB/OL]. (2020-09-30)[2021-12-10]. https://clinicaltrials.gov/ct2/show/NCT04570839
|
|
|
[48] |
GAGLIANIN, MAGNANIC F, HUBERS, et al.Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells[J]Nat Med, 2013, 19( 6): 739-746.
doi: 10.1038/nm.3179
|
|
|
[49] |
HUANGC T, WORKMANC J, FLIESD, et al.Role of LAG-3 in regulatory T cells[J]Immunity, 2004, 21( 4): 503-513.
doi: 10.1016/j.immuni.2004.08.010
|
|
|
[50] |
WOOS R, TURNISM E, GOLDBERGM V, et al.Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]Cancer Res, 2012, 72( 4): 917-927.
doi: 10.1158/0008-5472.CAN-11-1620
|
|
|
[51] |
U.S. National Library of Medicine. ClinicalTrials. gov. Immuno-oncology drugs elotuzumab, anti-LAG-3 and anti-TIGIT[EB/OL]. (2019-11-05)[2021-09-10]. https://clinicaltrials.gov/ct2/show/NCT04150965
|
|
|
[52] |
YINM, DIG, BIANM. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer[J]Int Immunopharmacol, 2018, 333-339.
doi: 10.1016/j.intimp.2018.09.016
|
|
|
[53] |
LANDAI, IBRAHIMPASICT, BOUCAIL, et al.Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]J Clin Investigation, 2016, 126( 3): 1052-1066.
doi: 10.1172/JCI85271
|
|
|
[54] |
BANCHEREAUJ, STEINMANR M. Dendritic cells and the control of immunity[J]Nature, 1998, 392( 6673): 245-252.
doi: 10.1038/32588
|
|
|
[55] |
RUSSELLS J, PENGK W, BELLJ C. Oncolytic virotherapy[J]Nat Biotechnol, 2012, 30( 7): 658-670.
doi: 10.1038/nbt.2287
|
|
|
[56] |
PASSAROC, BORRIELLOF, VASTOLOV, et al.The oncolytic virus dl 922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma[J]Oncotarget, 2016, 7( 2): 1500-1515.
doi: 10.18632/oncotarget.6430
|
|
|
[57] |
MONDALM, GUOJ, HEP, et al.Recent advances of oncolytic virus in cancer therapy[J]Hum Vaccines Immunother, 2020, 16( 10): 2389-2402.
doi: 10.1080/21645515.2020.1723363
|
|
|
[58] |
JIANGK, SONGC, KONGL, et al.Recombinant oncolytic newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells[J]BMC Cancer, 2018, 18( 1): 746.
doi: 10.1186/s12885-018-4522-3
|
|
|
[59] |
PRESTWICHR J, ERRINGTONF, DIAZR M, et al.The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon[J]Hum Gene Ther, 2009, 20( 10): 1119-1132.
doi: 10.1089/hum.2009.135
|
|
|
[60] |
KAUFMANH L, KOHLHAPPF J, ZLOZAA. Oncolytic viruses: a new class of immunotherapy drugs[J]Nat Rev Drug Discov, 2015, 14( 9): 642-662.
doi: 10.1038/nrd4663
|
|
|
[61] |
郭晓玲, 朱平, 恶性肿瘤细胞过继免疫治疗研究进展[J]. 国外医学(肿瘤学分册), 2004, 31(6): 418-421 GUO Xiaoling, ZHU Ping. Progress on adoptive immunotherapy in the treatment of tumors[J]. Foreign Medical Sciences (Cancer Section), 2004, 31(6): 418-421. (in Chinese)
|
|
|
[62] |
LEED A. Cellular therapy: adoptive immunotherapy with expanded natural killer cells[J]Immunol Rev, 2019, 290( 1): 85-99.
doi: 10.1111/imr.12793
|
|
|
[63] |
SINGHA K, MCGUIRKJ P. CAR T cells: continuation in a revolution of immunotherapy[J/OL]Lancet Oncol, 2020, 21( 3): e168-e178.
doi: 10.1016/S1470-2045(19)30823-X
|
|
|
[64] |
SUTLUT, ALICIE. Ex vivo expansion of natural killer cells: a question of function[J]Cytotherapy, 2011, 13( 6): 767-768.
doi: 10.3109/14653249.2011.563295
|
|
|
[65] |
TERRéNI, ORRANTIAA, VITALLéJ, et al.NK cell metabolism and tumor microenvironment[J]Front Immunol, 2019, 2278.
doi: 10.3389/fimmu.2019.02278
|
|
|
[66] |
ANGELLT E, LECHNERM G, JANGJ K, et al.MHC class i loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro[J]Clin Cancer Res, 2014, 20( 23): 6034-6044.
doi: 10.1158/1078-0432.CCR-14-0879
|
|
|
[67] |
WENNERBERGE, PFEFFERLEA, EKBLADL, et al.Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells[J]Clin Cancer Res, 2014, 20( 22): 5733-5744.
doi: 10.1158/1078-0432.CCR-14-0291
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|