Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (6): 675-684    DOI: 10.3724/zdxbyxb-2021-0273
Immunotherapy for anaplastic thyroid carcinoma: the present and future
LU Xixuan1,2,BAO Lisha1,2,PAN Zongfu2,3,*(),GE Minghua1,2,*()
1. Department of Head and Neck Surgery, Center of Otolaryngology, Head and Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
2. Zhejiang Provincial Key Laboratory of Endocrine Gland Diseases, Hangzhou 310014, China;
3. Department of Pharmacy, Clinical Pharmacy Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
Download: HTML( 23 )   PDF(3690KB)
Export: BibTeX | EndNote (RIS)      


Anaplastic thyroid carcinoma (ATC) is the most malignant tumor of endocrine system, which is an urgent medical problem to be solved. At present, immunotherapy studies on ATC mainly include cutting off the recruitment of tumor-associated macrophage (TAM), inducing the reprogramming of TAM and restoring its phagocytic function, targeting related immune checkpoints on T cells and natural killer cells, tumor vaccines based on oncolytic viruses and dendritic cells, and adoptive immunotherapy. Among them, immunotherapy strategies represented by targeted blocking of programmed death-1/programmed death ligand-1 at immune checkpoint have been preliminarily confirmed to benefit ATC patients, especially the combination of molecular targeted inhibitors and immunotherapy has shown excellent therapeutic effects. Due to the great heterogeneity of ATC, it is expected to provide more therapeutic strategies for patients of ATC by carrying out various immunotherapy studies including biological, immune and cellular therapies and exploring the therapeutic potential of the next generation of immune checkpoint inhibitors. This article reviews the potential immunotherapeutic targets of ATC and the progress of immunotherapy.

Key wordsAnaplastic thyroid carcinoma      Immune escape      Clinical study      Immunotherapy      Review     
Received: 10 August 2021      Published: 22 March 2022
CLC:  R736.1  
Corresponding Authors: PAN Zongfu,GE Minghua     E-mail:
Cite this article:

LU Xixuan,BAO Lisha,PAN Zongfu,GE Minghua. Immunotherapy for anaplastic thyroid carcinoma: the present and future. J Zhejiang Univ (Med Sci), 2021, 50(6): 675-684.

URL:     OR



关键词: 甲状腺未分化癌,  免疫逃逸,  临床研究,  免疫治疗,  综述 
Figure 1 Potential targets and interventions for anaplastic thyroid carcinoma immunotherapy
[1]   BRAYF, FERLAYJ, SOERJOMATARAMI, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]CA-Cancer J Clin, 2018, 68( 6): 394-424.
doi: 10.3322/caac.21492
[2]   ONODAN, SUGITANII, ITOK I, et al.Evaluation of the 8th edition TNM classification for anaplastic thyroid carcinoma[J]Cancers, 2020, 12( 3): 552.
doi: 10.3390/cancers12030552
[3]   CARCANGIUM L, STEEPERT, ZAMPIG, et al.Anaplastic thyroid carcinoma: a study of 70 cases[J]Am J Clin Pathol, 1985, 83( 2): 135-158.
doi: 10.1093/ajcp/83.2.135
[4]   DAVIESL, WELCHH G. Increasing incidence of thyroid cancer in the United States, 1973–2002[J]JAMA, 2006, 295( 18): 2164.
doi: 10.1001/jama.295.18.2164
[5]   KEBEBEWE, GREENSPANF S, CLARKO H, et al.Anaplastic thyroid carcinoma[J]Cancer, 2005, 103( 7): 1330-1335.
doi: 10.1002/cncr.20936
[6]   FAGINJ A, WELLSS A. Biologic and clinical perspectives on thyroid cancer[J]N Engl J Med, 2016, 375( 11): 1054-1067.
doi: 10.1056/NEJMra1501993
[7]   KUNSTMANJ W, JUHLINC C, GOHG, et al.Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing[J]Hum Mol Genet, 2015, 24( 8): 2318-2329.
doi: 10.1093/hmg/ddu749
[8]   AHNJ, JINM, SONGE, et al.Immune profiling of advanced thyroid cancers using fluorescent multiplex immunohistochemistry[J]Thyroid, 2021, 31( 1): 61-67.
doi: 10.1089/thy.2020.0312
[9]   KIMD I, KIME, KIMY A, et al.Macrophage densities correlated with CXC chemokine receptor 4 expression and related with poor survival in anaplastic thyroid cancer[J]Endocrinol Metab, 2016, 31( 3): 469-475.
doi: 10.3803/EnM.2016.31.3.469
[10]   Chávez-GalánL, OLLEROSM L, VESIND, et al.Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages[J]Front Immunol, 2015, 263.
doi: 10.3389/fimmu.2015.00263
[11]   CAILLOUB, TALBOTM, WEYEMIU, et al.Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma[J/OL]PLoS One, 2011, 6( 7): e22567.
doi: 10.1371/journal.pone.0022567
[12]   CHOJ W, KIMW W, LEEY M, et al.Impact of tumor-associated macrophages and BRAFV600E mutation on clinical outcomes in patients with various thyroid cancers[J]Head Neck, 2019, 41( 3): 686-691.
doi: 10.1002/hed.25469
[13]   NEUBERTN J, SCHMITTNAEGELM, BORDRYN, et al.T cell-induced CSF1 promotes melanoma resistance to PD1 blockade[J]Sci Transl Med, 2018, 10( 436): eaan3311.
doi: 10.1126/scitranslmed.aan3311
[14]   EDWARDS VD K, WATANABE-SMITHK, ROFELTYA, et al.CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells[J]Blood, 2019, 133( 6): 588-599.
doi: 10.1182/blood-2018-03-838946
[15]   LENZOJ C, TURNERA L, COOKA D, et al.Control of macrophage lineage populations by CSF‐1 receptor and GM‐CSF in homeostasis and inflammation[J]Immunol Cell Biol, 2012, 90( 4): 429-440.
doi: 10.1038/icb.2011.58
[16]   MINI M, SHEVLINE, VEDVYASY, et al.CAR T therapy targeting ICAM-1 eliminates advanced human thyroid tumors[J]Clin Cancer Res, 2017, 23( 24): 7569-7583.
doi: 10.1158/1078-0432.CCR-17-2008
[17]   U.S. National Library of Medicine. ClinicalTrials. gov.A combination clinical study of PLX3397 and pembrolizumab to treat advanced melanoma and other solid tumors[EB/OL]. (2019-10-09)[2020-03-05].
[18]   SALAJEGHEH A, VOSGHA H, RAHMAN M A, et al. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma[J]. Hum Pathol, 2016, 51: 75-85
[19]   MONNEYL, SABATOSC A, GAGLIAJ L, et al.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]Nature, 2002, 415( 6871): 536-541.
doi: 10.1038/415536a
[20]   MATSUMOTOK, EMAM. Roles of VEGF-A signalling in development, regeneration, and tumours[J]J Biochem, 2014, 156( 1): 1-10.
doi: 10.1093/jb/mvu031
[21]   ANTONELLIA, FERRARIS M, FALLAHIP. Current and future immunotherapies for thyroid cancer[J]Expert Rev Anticancer Ther, 2018, 18( 2): 149-159.
doi: 10.1080/14737140.2018.1417845
[22]   TANGX, AMARS. p53 suppresses CCL2-induced subcutaneous tumor xenograft[J]Tumor Biol, 2015, 36( 4): 2801-2808.
doi: 10.1007/s13277-014-2906-9
[23]   LIMS Y, YUZHALINA E, GORDON-WEEKSA N, et al.Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J]Oncotarget, 2016, 7( 19): 28697-28710.
doi: 10.18632/oncotarget.7376
[24]   LIX, YAOW, YUANY, et al.Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]Gut, 2017, 66( 1): 157-167.
doi: 10.1136/gutjnl-2015-310514
[25]   BANERJEES, HALDERK, GHOSHS, et al.The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ[J/OL]Oncoimmunology, 2015, 4( 3): e995559.
doi: 10.1080/2162402X.2014.995559
[26]   RYDERM, GILDM, HOHLT M, et al.Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression[J/OL]PLoS One, 2013, 8( 1): e54302.
doi: 10.1371/journal.pone.0054302
[27]   DOWNEYC M, AGHAEIM, SCHWENDENERR A, et al.DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization[J/OL]PLoS One, 2014, 9( 6): e99988.
doi: 10.1371/journal.pone.0099988
[28]   LIZOTTEP H, BAIRDJ R, STEVENSC A, et al.Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis[J/OL]Oncoimmunology, 2014, 3( 5): e28926.
doi: 10.4161/onci.28926
[29]   TRAHTEMBERGU, MEVORACHD. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells[J]Front Immunol, 2017, 1356.
doi: 10.3389/fimmu.2017.01356
[30]   VEILLETTEA, CHENJ. SIRPα-CD47 immune checkpoint blockade in anticancer therapy[J]Trends Immunol, 2018, 39( 3): 173-184.
doi: 10.1016/
[31]   SCHüRCHC M, ROELLIM A, FORSTERS, et al.Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy[J]Thyroid, 2019, 29( 7): 979-992.
doi: 10.1089/thy.2018.0555
[32]   ADVANIR, FLINNI, POPPLEWELLL, et al.CD47 blockade by hu5F9-G4 and rituximab in non-hodgkin’s lymphoma[J]N Engl J Med, 2018, 379( 18): 1711-1721.
doi: 10.1056/NEJMoa1807315
[33]   CICCARESEC, IACOVELLIR, BRIAE, et al.The incidence and relative risk of pulmonary toxicity in patients treated with anti-PD1/PD-L1 therapy for solid tumors: a meta-analysis of current studies[J]Immunotherapy, 2017, 9( 7): 579-587.
doi: 10.2217/imt-2017-0018
[34]   TOPALIANS L, TAUBEJ M, ANDERSR A, et al.Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]Nat Rev Cancer, 2016, 16( 5): 275-287.
doi: 10.1038/nrc.2016.36
[35]   GIANNINIR, MORETTIS, UGOLINIC, et al.Immune profiling of thyroid carcinomas suggests the existence of two major phenotypes: an ATC-Like and a PDTC-like[J]J Clin Endocrinol Metab, 2019, 104( 8): 3557.
doi: 10.1210/jc.2018-01167
[36]   BRAUNERE, GUNDAV, VANDEN BORREP, et al.Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer[J]Oncotarget, 2016, 7( 13): 17194-17211.
doi: 10.18632/oncotarget.7839
[37]   CAPDEVILAJ, WIRTHL J, ERNSTT, et al.PD-1 blockade in anaplastic thyroid carcinoma[J]J Clin Oncol, 2020, 38( 23): 2620-2627.
doi: 10.1200/JCO.19.02727
[38]   CHINTAKUNTLAWARA V, YINJ, FOOTER L, et al.A phase 2 study of pembrolizumab combined with chemoradiotherapy as initial treatment for anaplastic thyroid cancer[J]Thyroid, 2019, 29( 11): 1615-1622.
doi: 10.1089/thy.2019.0086
[39]   CAROSELLAE D, PLOUSSARDG, LEMAOULTJ, et al.A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G[J]Eur Urology, 2015, 68( 2): 267-279.
doi: 10.1016/j.eururo.2015.02.032
[40]   DIERKSC, SEUFERTJ, AUMANNK, et al.Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma[J]Thyroid, 2021, 31( 7): 1076-1085.
doi: 10.1089/thy.2020.0322
[41]   IYERP C, DADUR, GULE-MONROEM, et al.Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma[J]J Immunother Cancer, 2018, 6( 1): 68.
doi: 10.1186/s40425-018-0378-y
[42]   TUCCILLIC, BALDINIE, SORRENTIS, et al.CTLA-4 and PD-1 ligand gene expression in epithelial thyroid cancers[J]Int J Endocrinol, 2018, 1742951.
doi: 10.1155/2018/1742951
[43]   CALVO TARDóNM, ALLARDM, DUTOITV, et al.Peptides as cancer vaccines[J]Curr Opin Pharmacol, 2019, 20-26.
doi: 10.1016/j.coph.2019.01.007
[44]   U.S. National Library of Medicine. ClinicalTrials. gov. Nivolumab plus ipilimumab in thyroid cancer[EB/OL]. (2017-08-11)[2021-07-19].
[45]   HARJUNP??H, GUILLEREYC. TIGIT as an emerging immune checkpoint[J]Clin Exp Immunol, 2020, 200( 2): 108-119.
doi: 10.1111/cei.13407
[46]   U.S. National Library of Medicine. ClinicalTrials. gov. COM902 (a tigit inhibitor) in subjects with advanced malignancies[EB/OL]. (2020-04-21)[2021-10-05].
[47]   U.S. National Library of Medicine. ClinicalTrials. gov. COM701 in combination with BMS-986207 and nivolumab in subjects with advanced solid tumors[EB/OL]. (2020-09-30)[2021-12-10].
[48]   GAGLIANIN, MAGNANIC F, HUBERS, et al.Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells[J]Nat Med, 2013, 19( 6): 739-746.
doi: 10.1038/nm.3179
[49]   HUANGC T, WORKMANC J, FLIESD, et al.Role of LAG-3 in regulatory T cells[J]Immunity, 2004, 21( 4): 503-513.
doi: 10.1016/j.immuni.2004.08.010
[50]   WOOS R, TURNISM E, GOLDBERGM V, et al.Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape[J]Cancer Res, 2012, 72( 4): 917-927.
doi: 10.1158/0008-5472.CAN-11-1620
[51]   U.S. National Library of Medicine. ClinicalTrials. gov. Immuno-oncology drugs elotuzumab, anti-LAG-3 and anti-TIGIT[EB/OL]. (2019-11-05)[2021-09-10].
[52]   YINM, DIG, BIANM. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer[J]Int Immunopharmacol, 2018, 333-339.
doi: 10.1016/j.intimp.2018.09.016
[53]   LANDAI, IBRAHIMPASICT, BOUCAIL, et al.Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]J Clin Investigation, 2016, 126( 3): 1052-1066.
doi: 10.1172/JCI85271
[54]   BANCHEREAUJ, STEINMANR M. Dendritic cells and the control of immunity[J]Nature, 1998, 392( 6673): 245-252.
doi: 10.1038/32588
[55]   RUSSELLS J, PENGK W, BELLJ C. Oncolytic virotherapy[J]Nat Biotechnol, 2012, 30( 7): 658-670.
doi: 10.1038/nbt.2287
[56]   PASSAROC, BORRIELLOF, VASTOLOV, et al.The oncolytic virus dl 922-947 reduces IL-8/CXCL8 and MCP-1/CCL2 expression and impairs angiogenesis and macrophage infiltration in anaplastic thyroid carcinoma[J]Oncotarget, 2016, 7( 2): 1500-1515.
doi: 10.18632/oncotarget.6430
[57]   MONDALM, GUOJ, HEP, et al.Recent advances of oncolytic virus in cancer therapy[J]Hum Vaccines Immunother, 2020, 16( 10): 2389-2402.
doi: 10.1080/21645515.2020.1723363
[58]   JIANGK, SONGC, KONGL, et al.Recombinant oncolytic newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells[J]BMC Cancer, 2018, 18( 1): 746.
doi: 10.1186/s12885-018-4522-3
[59]   PRESTWICHR J, ERRINGTONF, DIAZR M, et al.The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon[J]Hum Gene Ther, 2009, 20( 10): 1119-1132.
doi: 10.1089/hum.2009.135
[60]   KAUFMANH L, KOHLHAPPF J, ZLOZAA. Oncolytic viruses: a new class of immunotherapy drugs[J]Nat Rev Drug Discov, 2015, 14( 9): 642-662.
doi: 10.1038/nrd4663
[61]   郭晓玲, 朱平, 恶性肿瘤细胞过继免疫治疗研究进展[J]. 国外医学(肿瘤学分册), 2004, 31(6): 418-421
GUO Xiaoling, ZHU Ping. Progress on adoptive immunotherapy in the treatment of tumors[J]. Foreign Medical Sciences (Cancer Section), 2004, 31(6): 418-421. (in Chinese)
[62]   LEED A. Cellular therapy: adoptive immunotherapy with expanded natural killer cells[J]Immunol Rev, 2019, 290( 1): 85-99.
doi: 10.1111/imr.12793
[63]   SINGHA K, MCGUIRKJ P. CAR T cells: continuation in a revolution of immunotherapy[J/OL]Lancet Oncol, 2020, 21( 3): e168-e178.
doi: 10.1016/S1470-2045(19)30823-X
[64]   SUTLUT, ALICIE. Ex vivo expansion of natural killer cells: a question of function[J]Cytotherapy, 2011, 13( 6): 767-768.
doi: 10.3109/14653249.2011.563295
[65]   TERRéNI, ORRANTIAA, VITALLéJ, et al.NK cell metabolism and tumor microenvironment[J]Front Immunol, 2019, 2278.
doi: 10.3389/fimmu.2019.02278
[66]   ANGELLT E, LECHNERM G, JANGJ K, et al.MHC class i loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro[J]Clin Cancer Res, 2014, 20( 23): 6034-6044.
doi: 10.1158/1078-0432.CCR-14-0879
[67]   WENNERBERGE, PFEFFERLEA, EKBLADL, et al.Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells[J]Clin Cancer Res, 2014, 20( 22): 5733-5744.
doi: 10.1158/1078-0432.CCR-14-0291
[1] MA Lijuan,WU Shuang,ZHANG Kai,TIAN Mei,ZHANG Hong. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 666-673.
[2] XUAN Zixue,ZHANG Yiwen,PAN Zongfu,ZHENG Xiaowei,HUANG Ping. Natural medicinal ingredients induce tumor ferroptosis and related mechanisms[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 601-606.
[3] QU Wenzheng,ZHUANG Yingliang,LI Xuekun. The roles of epigenetic modifications in neurodegenerative diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 642-650.
[4] SUN Qi,CAO Wei,LUO Jianhong. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 651-658.
[5] SHI Jianrong,MA Wangqian,TANG Huifang. Research progress of phosphodiesterase inhibitors in inflammatory bowel disease treatment[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 659-665.
[6] TANG Yue,KONG Yuanyuan. Hereditary tyrosinemia type Ⅰ: newborn screening, diagnosis and treatment[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 514-523.
[7] LIU Fei,FENG Chunyue,MAO Jianhua,FU Haidong. New-onset and relapsing glomerular diseases related to COVID-19 vaccination[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 524-528.
[8] HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.
[9] HU Mangsha,WEI Shuli,ZHOU Wuyuan,WANG Pingli. Research progress on neonatal Fc receptor and its application[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 537-544.
[10] HU Jingyi,WANG Qingqing,LIU Yang. Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 396-402.
[11] GE Yingzhou,LIU Xinmei,HUANG Hefeng. Advances in the role of silence information regulator family in pathological pregnancy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 335-344.
[12] WANG Jintao,HUANG Lei,WEI Lili,CHEN Wei. Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 383-389.
[13] ZHUANG Wenwen,YANG Yongqi,LI Hongliang,LIANG Jingyan. Research advance of Nrf2 on atherosclerosis by regulating vascular smooth muscle cell[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 390-395.
[14] ZHU Feng,XIANG Yingchun,ZENG Linghui. Progress on mitochondrial silence information regulator family in epilepsy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 403-408.
[15] REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.