Please wait a minute...
J Zhejiang Univ (Med Sci)  2022, Vol. 51 Issue (1): 95-101    DOI: 10.3724/zdxbyxb-2021-0270
Advances in relationship between cell senescence and atherosclerosis
LIU Dekun1,LIU Jiali1,ZHANG Dan2,*(),YANG Wenqing3,*()
1. Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China;
2. Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China;
3. Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
Download: HTML( 14 )   PDF(2025KB)
Export: BibTeX | EndNote (RIS)      


Cellular senescence is a biological process associated with the degeneration of cell structure and function, which contribute to age-related diseases. Atherosclerosis is a chronic inflammatory disease that can cause a variety of cardiovascular disorders. In this article, we review the effects of cellular senescence on the development of atherosclerosis through diverse physiopathological changes, focusing on the alterations in senescent organelles and the increased senescence-associated secretory phenotype (SASP), and exploring the relevant therapeutic strategies for atherosclerosis by clearing senescent cells and reducing SASP, to provide new insights for the treatment of atherosclerosis.

Key wordsAtherosclerosis      Senescence cells      Organelles      Senescence-associated secretory phenotype      Treatment strategies      Review     
Received: 03 September 2021      Published: 17 May 2022
CLC:  R543.5  
Corresponding Authors: ZHANG Dan,YANG Wenqing     E-mail:
Cite this article:

LIU Dekun,LIU Jiali,ZHANG Dan,YANG Wenqing. Advances in relationship between cell senescence and atherosclerosis. J Zhejiang Univ (Med Sci), 2022, 51(1): 95-101.

URL:     OR



关键词: 动脉粥样硬化,  衰老细胞,  细胞器,  衰老相关分泌表型,  治疗策略,  综述 
















Table 1 Effects of senescence on organelles function
[1]   BENNETTM R, SINHAS, OWENSG K. Vascular smooth muscle cells in atherosclerosis[J]Circ Res, 2016, 118( 4): 692-702.
doi: 10.1161/CIRCRESAHA.115.306361
[2]   FYHRQUISTF, SAIJONMAAO, STRANDBERGT. The roles of senescence and telomere shortening in cardiovascular disease[J]Nat Rev Cardiol, 2013, 10( 5): 274-283.
doi: 10.1038/nrcardio.2013.30
[3]   VAN DEURSENJ M. The role of senescent cells in ageing[J]Nature, 2014, 509( 7501): 439-446.
doi: 10.1038/nature13193
[4]   LUSISA J. Atherosclerosis[J]Nature, 2000, 407( 6801): 233-241.
doi: 10.1038/35025203
[5]   SABBATINELLIJ, VIGNINIA, SALVOLINIE, et al.Platelet-derived NO in subjects affected by type 2 diabetes with and without complications: is there any relationship with their offspring?[J]Exp Clin Endocrinol Diabetes, 2017, 125( 5): 290-296.
doi: 10.1055/s-0043-102578
[6]   PALOTN B, SIMONCINIS, ROBERTS, et al.Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment[J]Atherosclerosis, 2014, 237( 1): 45-52.
doi: 10.1016/j.atherosclerosis.2014.08.036
[7]   HUANGP L, HUANGZ, MASHIMOH, et al.Hypertension in mice lacking the gene for endothelial nitric oxide synthase[J]Nature, 1995, 377( 6546): 239-242.
doi: 10.1038/377239a0
[8]   SATOI, MORITAI, KAJIK, et al.Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell[J]Biochem Biophysl Res Commun, 1993, 195( 2): 1070-1076.
doi: 10.1006/bbrc.1993.2153
[9]   DONATOA J, GANOL B, ESKURZAI, et al.Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase[J]Am J Physiol Heart Circ Physiol, 2009, 297( 1): H425-H432.
doi: 10.1152/ajpheart.00689.2008
[10]   CHIENY, SCUOPPOC, WANGX, et al.Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity[J]Genes Dev, 2011, 25( 20): 2125-2136.
doi: 10.1101/gad.17276711
[11]   HASEGAWAY, SAITOT, OGIHARAT, et al.Blockade of the nuclear factor-κB pathway in the endothelium prevents insulin resistance and prolongs life spans[J]Circulation, 2012, 125( 9): 1122-1133.
doi: 10.1161/CIRCULATIONAHA.111.054346
[12]   ALIQUEM, RUÍZ-TORRESM P, BODEGAG, et al.Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification[J]Aging, 2017, 9( 3): 778-789.
doi: 10.18632/aging.101191
[13]   GARDNERS E, HUMPHRYM, BENNETTM R, et al.Senescent vascular smooth muscle cells drive inflammation through an interleukin-1α-dependent senescence-associated secretory phenotype[J]Arterioscler Thromb Vasc Biol, 2015, 35( 9): 1963-1974.
doi: 10.1161/ATVBAHA.115.305896
[14]   MINAMINOT, YOSHIDAT, TATENOK, et al.Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis[J]Circulation, 2003, 108( 18): 2264-2269.
doi: 10.1161/01.CIR.0000093274.82929.22
[15]   JOHNSONR C, LEOPOLDJ A, LOSCALZOJ. Vascular calcification[J]Circ Res, 2006, 99( 10): 1044-1059.
doi: 10.1161/01.RES.0000249379.55535.21
[16]   LEEJ, YOONS R, CHOII, et al.Causes and mechanisms of hematopoietic stem cell aging[J]Int J Mol Sci, 2019, 20( 6): 1272.
doi: 10.3390/ijms20061272
[17]   NAKAJIMAT, SCHULTES, WARRINGTONK J, et al.T-cell-mediated lysis of endothelial cells in acute coronary syndromes[J]Circulation, 2002, 105( 5): 570-575.
doi: 10.1161/hc0502.103348
[18]   VENTURAM T, CASCIAROM, GANGEMIS, et al.Immunosenescence in aging: between immune cells depletion and cytokines up-regulation[J]Clin Mol Allergy, 2017, 15( 1): 21.
doi: 10.1186/s12948-017-0077-0
[19]   TYRRELLD J, GOLDSTEIND R. Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6[J]Nat Rev Cardiol, 2021, 18( 1): 58-68.
doi: 10.1038/s41569-020-0431-7
[20]   CALVERTP A, LIEWT V, GORENNEI, et al.Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity[J]Arterioscler Thromb Vasc Biol, 2011, 31( 9): 2157-2164.
doi: 10.1161/ATVBAHA.111.229237
[21]   KIRKLANDJ L, TCHKONIAT. Cellular senescence: a translational perspective[J]EBioMedicine, 2017, 21-28.
doi: 10.1016/j.ebiom.2017.04.013
[22]   ZHUY, TCHKONIAT, PIRTSKHALAVAT, et al.The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs[J]Aging Cell, 2015, 14( 4): 644-658.
doi: 10.1111/acel.12344
[23]   ROOSC M, ZHANGB, PALMERA K, et al.Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice[J]Aging Cell, 2016, 15( 5): 973-977.
doi: 10.1111/acel.12458
[24]   FANGJ, LITTLEP J, XUS. Atheroprotective effects and molecular targets of tanshinones derived from herbal medicine danshen[J]Med Res Rev, 2018, 38( 1): 201-228.
doi: 10.1002/med.21438
[25]   OLIVEIRAG M, RAMOSC, MARQUESA R A, et al.Cell senescence, multiple organelle dysfunction and atherosclerosis[J]Cells, 2020, 9( 10): 2146.
doi: 10.3390/cells9102146
[26]   LÓPEZ-OTÍNC, BLASCOM A, PARTRIDGEL, et al.The hallmarks of aging[J]Cell, 2013, 153( 6): 1194-1217.
doi: 10.1016/j.cell.2013.05.039
[27]   WEIW, JIS. Cellular senescence: molecular mechanisms and pathogenicity[J]J Cell Physiol, 2018, 233( 12): 9121-9135.
doi: 10.1002/jcp.26956
[28]   FOOTEK, REINHOLDJ, YUE P K, et al.Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice[J/OL]Aging Cell, 2018, 17( 4): e12773.
doi: 10.1111/acel.12773
[29]   YUE, CALVERTP A, MERCERJ R, et al.Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans[J]Circulation, 2013, 128( 7): 702-712.
doi: 10.1161/CIRCULATIONAHA.113.002271
[30]   OGRODNIKM, MIWAS, TCHKONIAT, et al.Cellular senescence drives age-dependent hepatic steatosis[J]Nat Commun, 2017, 8( 1): 15691.
doi: 10.1038/ncomms15691
[31]   LIUJ, LUW, REIGADAD, et al.Restoration of lysosomal pH in RPE cells from cultured human and ABCA4−/− mice: pharmacologic approaches and functional recovery[J]Invest Ophthalmol Vis Sci, 2008, 49( 2): 772.
doi: 10.1167/iovs.07-0675
[32]   SCHNEIDERJ L, CUERVOA M. Autophagy and human disease: emerging themes[J]Curr Opin Genet Dev, 2014, 16-23.
doi: 10.1016/j.gde.2014.04.003
[33]   AHMADF, LEAKED S. Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages[J]J Lipid Res, 2019, 60( 1): 98-110.
doi: 10.1194/jlr.M088245
[34]   NARITAM, NUÑEZS, HEARDE, et al.Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence[J]Cell, 2003, 113( 6): 703-716.
doi: 10.1016/S0092-8674(03)00401-X
[35]   ZHANGR, POUSTOVOITOVM V, YEX, et al.Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA[J]Dev Cell, 2005, 8( 1): 19-30.
doi: 10.1016/j.devcel.2004.10.019
[36]   PLUQUETO, POURTIERA, ABBADIEC. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease[J]Am J Physiol Cell Physiol, 2015, 308( 6): C415-C425.
doi: 10.1152/ajpcell.00334.2014
[37]   CIVELEKM, MANDUCHIE, RILEYR J, et al.Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis[J]Circ Res, 2009, 105( 5): 453-461.
doi: 10.1161/CIRCRESAHA.109.203711
[38]   MATOSL, GOUVEIAA M, ALMEIDAH. ER stress response in human cellular models of senescence[J]J Gerontol A Biol Sci Med Sci, 2015, 70( 8): 924-935.
doi: 10.1093/gerona/glu129
[39]   CHENX, GUOX, GEQ, et al.ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis[J]Oxid Med Cell Longev, 2019, 1-18.
doi: 10.1155/2019/3462530
[40]   TAMA B, MERCADOE L, HOFFMANNA, et al.ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK[J/OL]PLoS One, 2012, 7( 10): e45078.
doi: 10.1371/journal.pone.0045078
[41]   FRANCESCO P, VALERIA D N, LUCIA L S, et al. “Inflammaging” as a druggable target: a senescence-associated secretory phenotype——centered view of type 2 diabetes[J]. Oxidative medicine and cellular longevity, 2016, (5): 1-10
[42]   ACOSTAJ C, O'LOGHLENA, BANITOA, et al.Chemokine signaling via the CXCR2 receptor reinforces senescence[J]Cell, 2008, 133( 6): 1006-1018.
doi: 10.1016/j.cell.2008.03.038
[43]   KUILMANT, MICHALOGLOUC, VREDEVELDL C W, et al.Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network[J]Cell, 2008, 133( 6): 1019-1031.
doi: 10.1016/j.cell.2008.03.039
[44]   ROSE-JOHNS, WINTHROPK, CALABRESEL. The role of IL-6 in host defence against infections: immunobiology and clinical implications[J]Nat Rev Rheumatol, 2017, 13( 7): 399-409.
doi: 10.1038/nrrheum.2017.83
[45]   SCHUETTH, OESTREICHR, WAETZIGG H, et al.Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice[J]Arterioscler Thromb Vasc Biol, 2012, 32( 2): 281-290.
doi: 10.1161/ATVBAHA.111.229435
[46]   WALTERSH E, DENEKA-HANNEMANNS, COXL S. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition[J]Aging, 2016, 8( 2): 231-244.
doi: 10.18632/aging.100872
[47]   BENNACEURK, ATWILLM, AL ZHRANYN, et al.Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism[J]Atherosclerosis, 2014, 236( 2): 312-320.
doi: 10.1016/j.atherosclerosis.2014.07.020
[48]   MAHMOUDIM, GORENNEI, MERCERJ, et al.Statins use a novel nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells[J]Circ Res, 2008, 103( 7): 717-725.
doi: 10.1161/CIRCRESAHA.108.182899
[1] WANG Wenni,CHEN Chaoqun,GU Xinhua. Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis[J]. J Zhejiang Univ (Med Sci), 2022, 51(1): 102-107.
[2] BIAN Mengyao,CHEN Lili,LEI Lihong. Research progress on the relationship between chronic periodontitis and Parkinson’s disease[J]. J Zhejiang Univ (Med Sci), 2022, 51(1): 108-114.
[3] JIN Qun,HUANG Lihua. Research progress on multicomponent physical exercise for patients with neurocognitive impairment[J]. J Zhejiang Univ (Med Sci), 2022, 51(1): 38-46.
[4] LU Xixuan,BAO Lisha,PAN Zongfu,GE Minghua. Immunotherapy for anaplastic thyroid carcinoma: the present and future[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 675-684.
[5] QIAN Chenhong,JIANG Liehao,XU Shiying,WANG Jiafeng,TAN Zhuo,XIN Ying,GE Minghua. Advances in targeted therapy for anaplastic thyroid carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 685-693.
[6] ZHOU Jing,WANG Yan,XU Enping. Research progress on application of microhaplotype in forensic genetics[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 777-782.
[7] REN Yuan,CUI Gedan,GAO Yongxiang. Research progress on inflammatory mechanism of primary Sj?gren syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(6): 783-794.
[8] MA Lijuan,WU Shuang,ZHANG Kai,TIAN Mei,ZHANG Hong. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 666-673.
[9] XUAN Zixue,ZHANG Yiwen,PAN Zongfu,ZHENG Xiaowei,HUANG Ping. Natural medicinal ingredients induce tumor ferroptosis and related mechanisms[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 601-606.
[10] QU Wenzheng,ZHUANG Yingliang,LI Xuekun. The roles of epigenetic modifications in neurodegenerative diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 642-650.
[11] SUN Qi,CAO Wei,LUO Jianhong. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 651-658.
[12] SHI Jianrong,MA Wangqian,TANG Huifang. Research progress of phosphodiesterase inhibitors in inflammatory bowel disease treatment[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 659-665.
[13] TANG Yue,KONG Yuanyuan. Hereditary tyrosinemia type Ⅰ: newborn screening, diagnosis and treatment[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 514-523.
[14] LIU Fei,FENG Chunyue,MAO Jianhua,FU Haidong. New-onset and relapsing glomerular diseases related to COVID-19 vaccination[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 524-528.
[15] HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.