Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (4): 506-513    DOI: 10.3724/zdxbyxb-2021-0264
    
Clinical characteristics and genetic analysis of neonatal intrahepatic cholestasis caused by citrin deficiency in comparison with idiopathic neonatal cholestasis
LIU Hao1*(),LI Chun2,LI Xiaowen2,YU Chaowen1,HE Xiaoyan1,MIAO Jingkun1,**()
1. Center for Clinical Molecular Medicine, Children’s Hospital of Chongqing Medical University, China International Science and Techonology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China;
2. Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
Download: HTML( 8 )   PDF(2307KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To compare the clinical and genetic characteristics of patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and idiopathic neonatal cholestasis (INC). Methods: The clinical data of 30 patients with NICCD and 30 patients with INC admitted in Children’s Hospital of Chongqing Medical University during September 2012 and December 2017 were retrospectively analyzed. The clinical manifestations, biochemical indicators and genetic characteristics were compared between two groups. Results:Patients in both groups presented similar clinical manifestations, however the chubby face and clay-colored stool were more common in NICCD patients (both P<0.01). Comparing with INC group, NICCD group showed significantly decreased blood levels of glucose, prealbumin, albumin, total protein, fibrinogen, and aminotransferases (P<0.05 orP<0.01), while significantly increased blood levels of indirect bilirubin, total bile acid, alkaline phosphatase, lactic dehydrogenase, ammonium, alpha fetoprotein, and markers of coagulation function (P<0.05 orP<0.01). In addition, NICCD patients showed remarkably increased blood levels of citrulline, methionine, tyrosine, arginine, and threonine; as well as significantly increased urine levels of 4-hydroxyphenyllactic acid, 4-hydroxyphenylpyruvic acid and phenyllactic acid, while those indicators in INC patients were normal (allP<0.01). All the patients with NICCD hadSLC25A13 mutation including 8 homozygotes, 9 compound heterozygotes, and 13 single heterozygotes. Among all mutations, c.851_854del was most common (53.19%), c.1196T>A and c.919G>T were two novel mutations.Conclusions:The manifestations of chubby face and clay-colored stool may provide clue for early diagnosis of NICCD along with the elevated biochemical parameters, such as ammonium, alpha-fetal protein, citrulline in blood and 4-hydroxyphenyllactic acid, 4-hydroxyphenylpyruvic acid, phenyllactic acid in urine. Target gene trapping and high-throughput sequencing have the key values in diagnosis and differential diagnosis of NICCD.



Key wordsCholestasis, intrahepatic      Newborn      Citrin deficiency      Blood amino acid      Urine organic acid      High-throughput sequencing     
Received: 11 May 2021      Published: 01 November 2021
CLC:  R722.11  
  R596  
Corresponding Authors: MIAO Jingkun     E-mail: 1320904@qq.com;jennamiao@aliyun.com
Cite this article:

LIU Hao,LI Chun,LI Xiaowen,YU Chaowen,HE Xiaoyan,MIAO Jingkun. Clinical characteristics and genetic analysis of neonatal intrahepatic cholestasis caused by citrin deficiency in comparison with idiopathic neonatal cholestasis. J Zhejiang Univ (Med Sci), 2021, 50(4): 506-513.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0264     OR     http://www.zjujournals.com/med/Y2021/V50/I4/506


Citrin蛋白缺乏所致新生儿肝内胆汁淤积症患儿临床特征及基因分析

目的:分析citrin蛋白缺乏所致新生儿肝内胆汁淤积症(NICCD)患儿的临床特征及基因突变特点。方法:回顾性分析2012年9月至2017年12月于重庆医科大学附属儿童医院就诊的30例NICCD患儿和同期诊治的30例特发性新生儿胆汁淤积症(INC)患儿的临床表现、生化指标和目标基因捕获结合高通量测序和桑格-库森法验证结果。结果:NICCD与INC临床表现相似,但圆胖脸和陶土便在NICCD患儿中更为常见(均P<0.01)。NICCD组血糖、前白蛋白、白蛋白、总蛋白、纤维蛋白原、转氨酶水平较INC组低(P<0.05或P<0.01),而间接胆红素、总胆汁酸、碱性磷酸酶、乳酸脱氢酶、血氨、甲胎蛋白、凝血功能标志物较INC组均升高(P<0.05或P<0.01);INC组血氨基酸水平多在正常值范围内,而NICCD组血瓜氨酸、甲硫氨酸、酪氨酸、精氨酸及苏氨酸水平均升高(均P<0.01);INC组尿有机酸轻度升高或正常,而NICCD组尿4-羟基苯乳酸、4-羟基苯丙酮酸及苯乳酸浓度显著升高(均P<0.01)。NICCD组均存在SLC25A13突变,其中8例为纯合突变,9例为复合杂合突变,13例为单位点突变,以c.851_854del(53.19%)最常见,同时发现2个新的致病性突变c.1196T>A和c.919G>T。结论:对于新生儿肝内胆汁淤积症并伴有圆胖脸、陶土便的患儿应警惕NICCD,血氨、甲胎蛋白、瓜氨酸以及尿4-羟基苯乳酸、4-羟基苯丙酮酸、苯乳酸水平升高可为临床诊断提供重要依据,目标基因捕获结合高通量测序对其诊断及鉴别诊断具有重要价值。


关键词: 胆汁淤积, 肝内,  新生儿,  Citrin蛋白缺乏,  血氨基酸,  尿有机酸,  高通量测序 

组别

n

男性

分娩孕周

起病年龄(d)

低出生体重儿

黄疸

NICCD组

30

22(73.3)

39+3(37+3,41+1

23(16,32)

4(13.3)

30(100.0)

INC组

30

20(66.7)

39+4(37+3,41+2

25(16,35)

2(6.7)

30(100.0)

χ2/U

0.317

0.328

0.319

0.741

0.000

P

>0.05

>0.05

>0.05

>0.05

>0.05

组别

n

腹泻

肝大

脾大

圆胖脸

陶土便

NICCD组

30

6(20.0)

17(56.7)

16(53.3)

16(53.3)

10(33.3)

INC组

30

4(13.3)

9(30.0)

15(50.0)

0(0.0)

1(3.3)

χ2/U

0.480

4.344

0.067

21.818

9.017

P

>0.05

>0.05

>0.05

<0.01

<0.01

[(%)或(,)] Clinical data of NICCD group and INC group

组别

n

血糖(mmol/L)

总胆红素(μmol/L)

直接胆红素(μmol/L)

间接胆红素(μmol/L)

总胆汁酸(μmol/L)

前白蛋白(g/L)

白蛋白(g/L)

NICCD组

30

3.3±1.8

168±58

85±44

77±50

222±89

66±24

32 ±7

INC组

30

4.7±1.7

146±52

94 ±43

43±29

151±81

109±35

40±6

正常值

3.90~5.90

2.00~17.00

0.00~6.00

0.00~20.00

172.00~368.00

172.00~368.00

35.00~55.00

t

2.661

1.725

0.724

3.238

3.685

3.685

3.653

P

<0.05

>0.05

>0.05

<0.01

<0.01

<0.01

<0.01

组别

n

总蛋白(g/L)

球蛋白(g/L)

丙氨酸转氨酶(U/L)

天冬氨酸转氨酶(U/L)

碱性磷酸酶(g/L)

乳酸(mmol/L)

血氨(μmol/L)

NICCD组

30

47±10

16±4

62±41

140±72

969±435

4.4±2.2

64±36

INC组

30

57±8

17±7

188±155

280±266

504±235

4.3±2.4

45±19

正常值

65.00~85.00

20.00~40.00

<40.00

<40.00

45.00~500.00

0.70~2.10

9.00~33.00

t

3.694

0.737

3.865

2.784

3.311

0.369

2.587

P

<0.01

>0.05

<0.01

<0.01

<0.01

>0.05

<0.05

组别

n

甲胎蛋白(ng/mL)

凝血酶原时间(s)

活化部分凝血酶原时间(s)

凝血酶时间(s)

纤维蛋白原(g/L)

D-二聚体(μg/L)

?

NICCD组

30

14?450±1378

17.4±4.7

67±39

23.8±4.0

0.9±0.4

16.0±3.4

?

INC组

30

3085±682

12.4±2.0

40±10

18.7±2.8

1.9±0.7

1.8±1.3

?

正常值

0.00~363.00

10.00~14.00

29.00~60.00

15.00~20.00

0.82~3.38

0.58~2.74

?

t

2.461

3.727

3.230

3.973

3.847

2.066

?

P

<0.05

<0.01

<0.01

<0.01

<0.01

<0.05

?

Table 2 Biochemical characteristics of NICCD group and INC group

组别

n

瓜氨酸*

甲硫氨酸*

酪氨酸*

精氨酸*

苏氨酸*

4-羟基苯丙酮酸

4-羟基苯乳酸

苯乳酸

4-羟基苯乙酸

NICCD组

30

238±180

141±124

118±84

63±46

130±57

69.53(3.90,207.61)

819.30(296.20,2340.10)

13.2±7.7

65±51

INC组

30

23±11

37±14

68±31

21±14

61±26

?0.03??(0.00,0.60)

1.95?????(1.10,8.70)

1.9±1.5

34±29

正常值

7~40

8~35

20~100

1.5~25.0

20~100

0.0~0.9

0.0~7.0

0.0~4.9

8.6~73.2

t/U

3.782

3.843

3.038

2.873

3.814

3.460

5.472

3.725

1.853

P

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

<0.01

>0.05

Table 3 Blood amino acids and urinary organic acids levels in NICCD group and INC group

基因突变

氨基酸改变

突变类型

频率

百分比(%)

c.851_854del

p.M285Pfs*2

缺失

25

53.19

IVS16ins3kb

p.A584fs585X

插入

5

10.64

c.1638_1660dup23

p.A554fsX570

重复

3

6.38

c.1660-1661insGAGATTACAGGTGGCTGCCCGGG

P.A554fs

错义

3

6.38

c.615+5G>A

splicing

剪接

3

6.38

c.1177+1G>A

splicing

剪接

2

4.26

c.2T>C

p.M1T

错义

1

2.13

c.754G>A

p.E252K

错义

1

2.13

c.919G>T

p.E307X

无义

1

2.13

c.1095delT

p.F365fs

缺失

1

2.13

c.1051G>A

p.D351N

无义

1

2.13

c.1196T>A

p.L399X

无义

1

2.13

合计

47

100.00

Table 4 gene mutations in 30 patients with NICCD
[1]   ANANTHR. Neonatal cholestasis: a primer of selected etiologies[J/OL]Pediatr Ann, 2018, 47( 11): e433.
doi: 10.3928/19382359-20181018-01
[2]   MCKIERNANP J. Neonatal cholestasis[J]Semin Neonatol, 2002, 7( 2): 153-165.
doi: 10.1053/siny.2002.0103
[3]   NUMAKURAC, TAMIYAG, UEKIM, et al.Growth impairment in individuals with citrin deficiency[J]J Inherit Metab Dis, 2019, 42( 3): 501-508.
doi: 10.1002/jimd.12051
[4]   SAHEKI T, SONG Y Z. Citrin deficiency-Gene reviews?[M/OL]. (2017-08-10)[2021-02-01].https://www.ncbi.nlm.nih.gov/books/NBK1181/
[5]   MOYERV, FREESED K, WHITINGTONP F, et al.Guideline for the evaluation of cholestatic jaundice in infants: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition[J]J Pediatr Gastroenterol Nutr, 2004, 39( 2): 115-128.
doi: 10.1097/00005176-200408000-00001
[6]   CHENH W, CHENH L, NIY H, et al.Chubby face and the biochemical parameters for the early diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency[J]J Pediatr Gastroenterol Nutr, 2008, 47( 2): 187-192.
doi: 10.1097/MPG.0b013e318162d96d
[7]   YANGC H, CHENC Y, CHOUY Y, et al.Bile acid profiles in neonatal intrahepatic cholestasis caused by citrin deficiency[J]Clin Chim Acta, 2017, 28-35.
doi: 10.1016/j.cca.2017.10.005
[8]   宋元宗. Citrin缺陷导致的新生儿肝内胆汁淤积症发病机制和治疗策略: 聚焦胆小管膜载体蛋白[J]. 中华实用儿科临床杂志, 2018, 33(19): 1447-1450
SONG Yuanzong. Pathophysiologic and therapeutic insights into neonatal intrahepatic cholestasis caused by citrin deficiency: focusing on the canalicular transporters[J]. Chinese Journal of Applied Clinical Pediatrics, 2018, 33(19): 1447-1450. (in Chinese)
[9]   WANGJ S, WANGX H, ZHENGY J, et al.Biochemical characteristics of neonatal cholestasis induced by citrin deficiency[J]World J Gastroenterol, 2012, 18( 39): 5601-5607.
doi: 10.3748/wjg.v18.i39.5601
[10]   HAYASAKAK. Metabolic basis and treatment of citrin deficiency[J]Jrnl Inher Metab Disea, 2021, 44( 1): 110-117.
doi: 10.1002/jimd.12294
[11]   SAHEKIT, KOBAYASHIK, IIJIMAM, et al.Pathogenesis and pathophysiology of citrin (a mitochondrial aspartate glutamate carrier) deficiency [J]Metab Brain Dis, 2002, 17( 4): 335-346.
doi: 10.1023/a:1021961919148
[12]   WUJ T, BOOKL, SUDARK. Serum alpha fetoprotein (AFP) levels in normal infants[J]Pediatr Res, 1981, 15( 1): 50-52.
doi: 10.1203/00006450-198101000-00012
[13]   SAHEKIT, KOBAYASHIK. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type Ⅱ citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD)[J]J Hum Genet, 2002, 47( 7): 333-341.
doi: 10.1007/s100380200046
[14]   SHIGETOMIH, TANAKAT, NAGAOM, et al.Early detection and diagnosis of neonatal intrahepatic cholestasis caused by citrin deficiency missed by newborn screening using tandem mass spectrometry[J]Int J Neonatal Screen, 2018, 4( 1): 5.
doi: 10.3390/ijns4010005
[15]   唐诚芳, 刘思迟, 冯毅, 等. 希特林蛋白缺乏症新生儿早期血氨基酸谱特征及新生儿筛查评估[J]. 中华儿科杂志, 2019, 57(10): 797-801
TANG Chengfang, LIU Sichi, FENG Yi, et al. Newborn screening program and blood amino acid profiling in early neonates with citrin deficiency[J]. Chinese Journal of Pediatrics, 2019, 57(10): 797-801. (in Chinese)
[16]   BYLSTRAY, KUANJ L, LIMW K, et al.Population genomics in South East Asia captures unexpectedly high carrier frequency for treatable inherited disorders[J]Genet Med, 2019, 21( 1): 207-212.
doi: 10.1038/s41436-018-0008-6
[17]   FERNBACHS A, SUMMONSR E, PEREIRAW E, et al.Metabolic studies of transient tyrosinemia in premature infants[J]Pediatr Res, 1975, 9( 4): 172-176.
doi: 10.1203/00006450-197504000-00006
[18]   王美娟, 钟雪梅, 马昕, 等. 婴儿肝内胆汁淤积症患儿的临床特征及基因分析[J]. 中国当代儿科杂志, 2021, 23(1): 91-97
WANG Meijuan, ZHONG Xuemei, MA Xin, et al. Clinical characteristic and gene variants of patients with infantile intrahepatic cholestasis [J]. Chinese Journal of Contemporary Pediatrics, 2021, 23(1): 91-97. (in Chinese)
[19]   LINY, LIUY, ZHUL, et al.Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency[J]Jrnl Inher Metab Disea, 2020, 43( 3): 467-477.
doi: 10.1002/jimd.12206
[20]   WOOH I, PARKH D, LEEY W. Molecular genetics of citrullinemia types Ⅰ and Ⅱ[J]Clin Chim Acta, 2014, 1-8.
doi: 10.1016/j.cca.2014.01.032
[21]   LINW X, ZENGH S, ZHANGZ H, et al.Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution[J]Sci Rep, 2016, 6( 1): 29732.
doi: 10.1038/srep29732
[22]   OHS H, LEEB H, KIMG H, et al.Biochemical and molecular characteristics of citrin deficiency in Korean children[J]J Hum Genet, 2017, 62( 2): 305-307.
doi: 10.1038/jhg.2016.131
[23]   SONGY Z, ZHANGZ H, LINW X, et al.SLC25A13 gene analysis in citrin deficiency: sixteen novel mutations in East Asian patients, and the mutation distribution in a large pediatric cohort in China[J/OL]PLoS One, 2013, 8( 9): e74544.
doi: 10.1371/journal.pone.0074544
[24]   乐 鑫, 熊小丽, 赵培伟, 等. Citrin缺陷所致新生儿肝内胆汁淤积症SLC25A13基因突变的分子诊断[J]. 临床儿科杂志, 2014, 32(4): 312-315
YUE Xin, XIONG Xiaoli, ZHAO Peiwei, et al. Molecular diagnosis of SLC25A13 gene mutation in neonatal intrahepatic cholestasis caused by citrin deficiency [J]. Journal of Clinical Pediatrics, 2014, 32(4): 312-315. (in Chinese)
[25]   CHENJ L, ZHANGZ H, LIB X, et al.Bioinformatic and functional analysis of promoter region of human SLC25A13 gene[J]Gene, 2019, 69-75.
doi: 10.1016/j.gene.2019.01.023
[26]   CONVERTINIP, TODISCOS, DE SANTISF, et al.Transcriptional regulation factors of the human mitochondrial aspartate/glutamate carrier gene, isoform 2 (SLC25A13): USF1 as basal factor and FOXA2 as activator in liver cells[J]Int J Mol Sci, 2019, 20( 8): 1888.
doi: 10.3390/ijms20081888
[1] HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.
[2] TANG Chengfang,TAN Minyi,XIE Ting,TANG Fang,LIU Sichi,WEI Qingxiu,LIU Jilian,HUANG Yonglan. Screening for neonatal inherited metabolic disorders by tandem mass spectrometry in Guangzhou[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 463-471.
[3] WANG Linyan,XUE Jiajin,CHEN Yi,LYU Chengjie,HUANG Shoujiang,TOU Jinfa,GAO Zhigang,CHEN Qingjiang. Clinical analysis of annular pancreas in neonates[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 481-486.
[4] CHEN Dong,HU Yuanjun,WU Yurui,LI Xiaoying. Risk factors of death in newborns with congenital diaphragmatic hernia[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 83-88.
[5] WANG Hefeng,LIU Xingfeng,WANG Hongxuan,HU Yuanjun,WU Yurui. Thoracoscopic repair of congenital diaphragmatic hernia in neonates: a report of 47 cases[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 283-288.
[6] LYU Chengjie,HU Donglai,HUANG Shoujiang,QIN Qi,ZHAO Xiaoxia,HU Shuqi,ZHANG Yanan,FANG Xuan,GUO Xiaodong,TOU Jinfa. Transumbilical single-site laparoscopic surgery for congenital duodenal obstruction in neonates[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 261-265.
[7] ZHANG Yuxi,MO Xuming,SUN Jian,PENG Wei,QI Jirong,WU Kaihong,SU Yaqin. Application of thoracoscopic surgery in repairing esophageal atresia type Ⅲ with tracheoesophageal fistula in neonates[J]. J Zhejiang Univ (Med Sci), 2018, 47(3): 266-271.
[8] FANG Qingqing, LI Zhizhong, ZHOU Jian, SHI Wengui, YAN Juanli, CHEN Keming. Genic and non-genic regulation of low frequence pulsed electromagnetic fields on osteoblasts differentiation[J]. J Zhejiang Univ (Med Sci), 2016, 45(6): 568-574.
[9] LIU Furong, LI Shengtian. Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property[J]. J Zhejiang Univ (Med Sci), 2016, 45(3): 275-280.
[10] Wang Tianlin, Yu Huimin. Application of Transcutaneous Bilirubin Measurements in Newborns[J]. J Zhejiang Univ (Med Sci), 1999, 28(3): 134-136.
[11] Zheng Jiyan, Ma Ming, Chen Liqing. Analysis of Serum TNF-α and sTNFR-Ⅱ Levels in Neonatal Sepsis[J]. J Zhejiang Univ (Med Sci), 1999, 28(2): 65-66.
[12] Jiang Mizu, Sheng Jian, Wang Tianlin, et al. TWENTY-FOUR HOURS ESOPHAGEAL PH MONITORING OF NEONATAL GASTROESOPHAGEAL REFLUX[J]. J Zhejiang Univ (Med Sci), 1996, 25(2): 66-68.
[13] Gong Fangqi, Sun Meiyue. A SERIAL STUDY OF INTRACRANIAL PERFUSION AND ASCENDING AORTIC FLOW IN NEWBORNS[J]. J Zhejiang Univ (Med Sci), 1995, 24(4): 162-163.
[14] Wang Jie, Xu Yaping, Hong Wenlan. CLINICAL ANALYSIS OF 167 CASES OF NEONATALSTAPHYLOCOCCUS AUREUS SEPTICEMIA[J]. J Zhejiang Univ (Med Sci), 1995, 24(3): 119-121.