Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (4): 463-471    DOI: 10.3724/zdxbyxb-2021-0260
    
Screening for neonatal inherited metabolic disorders by tandem mass spectrometry in Guangzhou
TANG Chengfang(),TAN Minyi,XIE Ting,TANG Fang,LIU Sichi,WEI Qingxiu,LIU Jilian,HUANG Yonglan()
Guangzhou Newborn Screening Center, Guangzhou Women and Children’s Medical Center, Guangzhou 510180, China
Download: HTML( 2 )   PDF(2261KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To analyze the screening results for inherited metabolic disorders (IMD) in newborns by tandem mass spectrometry (MS/MS) in Guangzhou.Methods:A total of 272?117 newborns in Guangzhou from Jan 2015 to Dec 2020 were screened for IMD by MS/MS in Guangzhou Newborn Screening Center. When the primary screening was positive, the newborns and their mothers were recalled. For those with positive in re-examination, the biochemical and related genetic analysis were required for confirmation. The screening results, clinical characteristics and outcomes of the confirmed cases were retrospectively analyzed and the performance was optimized. Results:Among 272?117 neonates, 1808 (0.66%) cases were positive in primary screening, and 1738 cases (96.13%) were recalled for review. The median clinical diagnosis time was 15 d after birth. A total of 79 cases of IMD were diagnosed, including 23 with aminoacidopathy, 17 with disorder of organic acid metabolism and 39 with fatty acid oxidation disorders, involving 21 diseases. The incidence rate was 1/3444 in newborns, and the positive predictive value of 4.5%. Four false negative cases were found, all of them were citrin deficiency. The common diseases were primary carnitine deficiency (26.6%), methylmalonic aciduria (12.7%) and phenylalanine hydroxylase deficiency (11.4%). The mothers of 32 cases were confirmed, including 30 cases of primary carnitine deficiency, 1 case of isobutyl-coenzyme A dehydrogenase deficiency and 1 case of 3-methylcromaryl coenzyme A carboxylase deficiency. The detection rate was 1/2451 in total population. During the follow-up, most patients remain asymptomatic, except for 5 severe cases who died early (1 case of maple syrup urine disease, 2 cases of isolated methylmalonic acidurmia, and 2 cases of carnitine-acylcarnitine translocase deficiency); and 10 cases of organic acid metabolism disorders developed mild psychomotor developmental retardation. After optimizing the screening indicators, the number of initial screening positives dropped to 903, and the positive predictive value increased to 9.1%, and no confirmed cases were missed. Conclusion:The incidence rate of fatty acid oxidation disorders is high in Guangzhou. A variety of IMD can be effectively screened out by MS/MS, and the screening performance can be improved by optimizing screening indicators.



Key wordsNeonatal screening      Metabolism, inborn errors      Aminoacidopathy      Disorder of organic acid metabolism      Fatty acid oxidation disorders      Citrin deficiency      Tandem mass spectrometry     
Received: 11 May 2021      Published: 01 November 2021
CLC:  R722.11  
  R596  
Corresponding Authors: HUANG Yonglan     E-mail: fangfang_violet@sina.cn;xxhuang321@163.com
Cite this article:

TANG Chengfang,TAN Minyi,XIE Ting,TANG Fang,LIU Sichi,WEI Qingxiu,LIU Jilian,HUANG Yonglan. Screening for neonatal inherited metabolic disorders by tandem mass spectrometry in Guangzhou. J Zhejiang Univ (Med Sci), 2021, 50(4): 463-471.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0260     OR     http://www.zjujournals.com/med/Y2021/V50/I4/463


广州地区新生儿遗传代谢病串联质谱法筛查结果及筛查性能评估

目的:了解广州地区新生儿遗传代谢病病种的分布特征、发病率及确诊患者的临床转归,优化筛查指标以提高串联质谱法遗传代谢病筛查效能。方法:采用串联质谱法对2015年1月至2020年12月在广州市出生的272?117名新生儿进行多种遗传代谢病筛查,以主要筛查指标2次超出阳性切值判断为筛查阳性,召回复查,对疑似母源性疾病连同母亲一并召回,复查仍阳性者进行生化及相关基因测序确诊。回顾性分析筛查结果、确诊病例的临床特点及转归,并进一步优化筛查指标。结果:在272?117名新生儿中,初筛阳性1808例,阳性率为0.66%;召回复查1738例,召回率为96.13%;临床诊断时间中位数为15?d,确诊新生儿遗传代谢病79例,包括氨基酸代谢病23例、有机酸代谢病17例及脂肪酸氧化障碍39例。共计21个病种,常见病种为原发性肉碱缺乏症(26.6%)、甲基丙二酸血症(12.7%)及苯丙氨酸羟化酶缺乏症(11.4%),发现假阴性病例4例,均为citrin蛋白缺乏症。272?117名新生儿遗传代谢病筛查总体发病率约为1/3444,阳性预测值为4.5%。确诊母亲患者32例,包括原发性肉碱缺乏症30例、异丁酰基辅酶A脱氢酶缺乏症及3-甲基巴豆酰辅酶A羧化酶缺乏症各1例。遗传代谢病筛查总体检出率为1/2451。所有确诊病例随访至今,5例重型患儿(枫糖尿症1例、单纯型甲基丙二酸血症2例、肉碱-酰基肉碱移位酶缺乏症2例)早期死亡,10例有机酸代谢病患儿出现轻度精神运动发育迟缓。优化各病种筛查指标后,初筛阳性数降至903例,阳性预测值提高至9.1%,未遗漏确诊病例。结论:广州地区新生儿脂肪酸氧化障碍发病率相对较高,串联质谱法能有效筛查多种遗传代谢病,优化筛查指标可提高筛查效能。


关键词: 新生儿筛查,  代谢缺陷,先天性,  氨基酸代谢病,  有机酸代谢病,  脂肪酸氧化障碍,  citrin蛋白缺乏症,  串联质谱法 

疾病名称

确诊例数

发病率

诊断时间[M(min~max),d]

诊断时发病例数*

随访时间[M(min~max),月]

随访结果

正常

精神运动发育迟缓

死亡

氨基酸代谢病

23

1/11?831

?

苯丙氨酸羟化酶缺乏症

9

1/30?235

16(9~77)

0

42.8(4.6~60.4)

9

0

0

四氢生物蝶呤缺乏症

1

1/272?117

11

0

15.9

1

0

0

citrin蛋白缺乏症

6

1/45?353

15(10~31)

6

14.0(4.4~21.7)

6

0

0

瓜氨酸血症Ⅰ型

2

1/136?059

32(13~51)

0

37.4(17.7~57.2)

2

0

0

精氨酰琥珀酸尿症

1

1/272?117

16

0

12.6

1

0

0

精氨酸血症

1

1/272?117

7

0

10.8

1

0

0

枫糖尿症

1

1/272?117

9

1

0.3

0

0

1

高甲硫氨酸血症

2

1/136?059

28(17~39)

0

11.4(8.1~14.7)

2

0

0

有机酸代谢病

17

1/16?007

?

单纯型甲基丙二酸血症

6

1/45?353

6(1~12)

6

11.0(0.2~37.5)

0

4

2

甲基丙二酸血症伴同型半胱氨酸血症

4

1/68?029

19(13~27)

3

46.6(37.4~63.7)

1

3

0

丙酸血症

1

1/272?117

12

1

33.8

0

1

0

3-甲基巴豆酰辅酶A羧化酶缺乏症

2

1/136?059

36(42~30)

0

12.0(1.4~22.5)

2

0

0

全羧化酶合成酶缺乏症

1

1/272?117

43

0

57.4

1

0

0

戊二酸血症Ⅰ型

3

1/90?706

12(7~14)

2

28.4(19.1~29.8)

1

2

0

脂肪酸氧化障碍

39

1/6 977

?

原发性肉碱缺乏症

21

1/12?958

19(7~108)

0

18.8(0.7~55.4)

21

0

0

短链酰基辅酶A脱氢酶缺乏症

8

1/34?015

18(12~40)

0

18.0(2.1~57.4)

8

0

0

异丁酰基辅酶A脱氢酶缺乏症

3

1/90?706

14(14~21)

0

2.6(2.4~5.5)

3

0

0

肉碱-酰基肉碱移位酶缺乏症

2

1/136?059

11(7~15)

2

1.0(0.3~1.7)

0

0

2

中链酰基辅酶A脱氢酶缺乏症

2

1/136?059

12(10~13)

0

1.5(1.4~1.6)

2

0

0

极长链酰基辅酶A脱氢酶缺乏症

1

1/272?117

10

0

18.6

1

0

0

2-甲基丁酰辅酶A脱氢酶缺乏症

2

1/136?059

27(11~43)

0

11.5(1.4~21.6)

2

0

0

合计

79

1/3445

15(1~108)

21

62

10

5

Table 1 Screening, diagnosis and follow-up of patients with inherited metabolic disorders in 272 117 newborns

疾病名称

确诊病例数

目标分析物

阳性判断

初筛检测浓度

诊断年龄(岁)

原发性肉碱缺乏症

30

C0

C3+C16

<10?μmol/L

<2.0?μmol/L

2.4(0.8~9.8)?μmol/L

0.37(0.12~0.94)?μmol/L

29.5(21.3~43.3)

异丁酰基辅酶A脱氢酶缺乏症

1

C4

C4/C3

>0.7?μmol/L

>0.5

1.61?μmol/L

1.14

34.1

3-甲基巴豆酰辅酶A羧化酶缺乏症

1

C5OH

C5OH/C8

>0.6?μmol/L

>11

4.13?μmol/L

413

39.9

Table 2 Screening results of inherited metabolic disorders in mothers of neonates with positive C0, C4 and C5OH in primary screening

疾病名称

n

主要指标(μmol/L)

初筛阳性例数

阳性预测值(%)

次要指标

优化后初筛阳性例数

优化后阳性预测值(%)

确诊病例初筛检测浓度[M(min~max)]

氨基酸代谢病

23

?

苯丙氨酸羟化酶缺乏症

9

Phe>120

117

8.8

Phe/Tyr>2.0

39

26.3

Phe:223(167~603)?μmol/L

Phe/Tyr:3.7(2.7~12.6)

四氢生物蝶呤缺乏症

1

citrin蛋白缺乏症

6

Cit>30

102

9.1

Ala/Cit<7.56

45

23.3

Cit:108(33~482)?μmol/L

Ala/Cit:1.4(0.7~6.4)

瓜氨酸血症Ⅰ型

2

精氨酰琥珀酸尿症

1

精氨酸血症

1

Arg>30

3

33.3

Arg/Phe<0.75

3

33.3

Arg:190?μmol/L

Arg/Phe:3.56

枫糖尿症

1

Leu>250

Val>180

69

1.5

Leu/Phe>4.5

11

10.0

Leu:1 078?μmol/L

Val:450?μmol/L

Leu/Phe:20.6

高甲硫氨酸血症

2

Met>50

19

10.5

Met/Phe>0.8

13

15.4

Met:80(78~83)?μmol/L

Met/Phe:1.4(1.2~1.7)

有机酸代谢病

17

?

单纯型甲基丙二酸血症

6

C3>5.0

320

3.6

C3/C2>0.25

Met<10?μmol/L*

91

12.2

C3:10.7(4.5~15.2)?μmol/L

C3/C2:0.65(0.29~1.23)

丙酸血症

1

甲基丙二酸血症伴同型半胱氨酸血症

4

3-甲基巴豆酰辅酶A羧化酶缺乏症

2

C5OH>0.6

64

4.8

C5OH/C8>11

41

7.3

C5OH:2.0(1.8~2.5)?μmol/L

C5OH/C8:19(18.8~19.2)

全羧化酶合成酶缺乏症

1

戊二酸血症Ⅰ型

3

C5DC>0.28

19

15.8

C5DC/C8>4.2

10

30.0

C5DC:1.4(0.6~1.9)?μmol/L

C5DC/C8:20.3(19.8~24.5)

脂肪酸氧化障碍

39

?

原发性肉碱缺乏症

21

C0<10

314

7.1

C0<8.5?μmol/L或C0? 8.5~9.9?μmol/伴(C3+C16)<2?μmol/L

165

13.0

C0:6.5(3.1~9.3)?μmol/L

C3+C16:1.5(0.6~2.6) μmol/L

短链酰基辅酶A脱氢酶缺乏症

8

C4>0.7

118

9.7

C4/C3>0.5

56

20.4

C4:1.6(0.8~2.2)?μmol/L

C4/C3:1.1(0.7~1.6)

异丁酰基辅酶A脱氢酶缺乏症

3

肉碱-酰基肉碱移位酶缺乏症

2

C12>0.4

C14>0.55

C16>6.68

78

2.6

(C16+C18:1)/C2>0.5

6

33.3

C12:0.58(0.35~0.80)?μmol/L

C14:0.88(0.80~0.90)?μmol/L

C16:10.1(8.8~11.4)?μmol/L

(C16+C18:1)/C2:1.5(1.4~1.5)

中链酰基辅酶A脱氢酶缺乏症

2

C8>0.3

52

3.8

C8/C10>2.0

4

50.0

C8:10.8(1.4~20.2)?μmol/L

C8/C10:9.5(8.1~10.8)

极长链酰基辅酶A脱氢酶缺乏症

1

C14:1>0.55

41

2.5

C14:1/C12:1>5.0

2

50.0

C14:1:4.6?μmol/L

C14:1/C12:1:21.9

2-甲基丁酰辅酶A脱氢酶缺乏症

2

C5>0.5

136

1.5

C5/C3≥0.25

61

3.4

C5:0.7(0.6~0.8)?μmol/L

C5/C3:0.36(0.24~0.46)

Table 3 Comparison of screening results of neonatal inherited metabolic disorders before and after optimization of screening indicators
[1]   LOEBERJ G, PLATISD, ZETTERSTR?MR H, et al.Neonatal screening in europe revisited: an ISNS perspective on the current state and developments since 2010[J]Int J Neonatal Screen, 2021, 7( 1): 15.
doi: 10.3390/ijns7010015
[2]   OMBRONED, GIOCALIEREE, FORNIG, et al.Expanded newborn screening by mass spectrometry: new tests, future perspectives[J]Mass Spectrom Rev, 2016, 35( 1): 71-84.
doi: 10.1002/mas.21463
[3]   LINDNERM, GRAMERG, HAEGEG, et al.Efficacy and outcome of expanded newborn screening for metabolic diseases - report of 10 years from South-West Germany [J]Orphanet J Rare Dis, 2011, 6( 1): 44.
doi: 10.1186/1750-1172-6-44
[4]   卫生部临床检验中心新生儿遗传代谢疾病筛查室间质量评价委员会.新生儿疾病串联质谱筛查技术专家共识[J]. 中华检验医学杂志, 2019, 42(2): 89-97
Interlaboratory Quality Assessment Committee for Neonatal Genetic and Metabolic Diseases Screening, Clinical Laboratory Center, Ministry of Health. Expert consensus on tandem mass spectrometry screening for neonatal diseases [J]. Chinese Journal of Laboratory Medicine, 2019, 42(2): 89-97. (in Chinese)
[5]   中华人民共和国卫生部. 新生儿疾病筛查技术规范(2010年版) [A/OL]. (2010-11-10) [2020-06-11].http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/doc10798. doc
Ministry of Health of the People’s Republic of China.Technical guide of newborn screening in China(2010)[A/ OL]. (2010-11-10) [2020-06-11]. http://www.nhc.gov.cn/cmsresources/mohfybjysqwss/cmsrsdocument/ doc10798. doc. (in Chinese)
[6]   黄新文, 杨建滨, 童 凡, 等. 串联质谱技术对新生儿遗传代谢病的筛查及随访研究[J]. 中华儿科杂志, 2011, 49(10): 765-770
HUANG Xinwen, YANG Jianbin, TONG Fan, et al. Screening for neonatal inborn errors of metabolism by electrospray ionization-tandem mass spectrometry and follow-up [J]. Chinese Journal of Pediatrics, 2011, 49(10): 765-770. (in Chinese)
[7]   国家卫生健康委员会临床检验中心新生儿遗传代谢病筛查室间质评委员会, 欧明才, 江剑辉. 新生儿遗传代谢病筛查随访专家共识[J]. 中华医学遗传学杂志, 2020, 37(4): 367-372
Committee for Proficiency Testing, Neonatal Genetic Metabolic Disease Screening Center, Nationnal Health Commission of China, OU Mingcai, JIANG Jianhui. Expert consensus on the follow-up of newborn screening for neonatal genetic and metabolic diseases [J]. Chinese Journal of Medical Genetics, 2020, 37(4): 367-372. (in Chinese)
[8]   MESSINAM A, MELIC, RAUDINOF, et al.Expanded newborn screening using tandem mass spectrometry: seven years of experience in eastern sicily[J]Int J Neonatal Screen, 2018, 4( 2): 12.
doi: 10.3390/ijns4020012
[9]   CAMBRA CONEJERO A, MARTINEZ FIGUERAS L, ORTIZ TEMPRADO A, et al. Newborn screening program in the community of madrid: evaluation of positive cases[J/OL]. Rev Esp Salud Publica, 2020, 94:e202012185
[10]   LINY, ZHANGW, CHENZ, et al.Newborn screening and molecular features of patients with multiple acyl-CoA dehydrogenase deficiency in Quanzhou, China[J]J Pediatr Endocrinol Metab, 2021, 34( 5): 649-652.
doi: 10.1515/jpem-2020-0694
[11]   WANGT, MAJ, ZHANGQ, et al.Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry in Suzhou, China: disease spectrum, prevalence, genetic characteristics in a Chinese population[J]Front Genet, 2019, 1052.
doi: 10.3389/fgene.2019.01052
[12]   GUOK, ZHOUX, CHENX, et al.Expanded newborn screening for inborn errors of metabolism and genetic characteristics in a Chinese population[J]Front Genet, 2018, 122.
doi: 10.3389/fgene.2018.00122
[13]   张晓刚, 杨建平, 阎亚琼, 等. 81?138例新生儿遗传代谢病串联质谱筛查结果回顾性分析[J]. 中国医师杂志, 2019, 21(7): 1081-1082
ZHANG Xiaogang, YANG Jianping, YAN Yaqiong, et al. Retrospective analysis of the screening results of 81?138 newborns with genetic metabolic diseases by tandem mass spectrometry[J]. Journal of Chinese Physician, 2019, 21(7): 1081-1082. (in Chinese)
[14]   YANGN, GONGL F, ZHAOJ Q, et al.Inborn errors of metabolism detectable by tandem mass spectrometry in Beijing[J]J Pediatr Endocrinol Metab, 2020, 33( 5): 639-645.
doi: 10.1515/jpem-2019-0420
[15]   DENGK, ZHUJ, YUE, et al.Incidence of inborn errors of metabolism detected by tandem mass spectrometry in China: a census of over seven million newborns between 2016 and 2017[J]J Med Screen, 2021, 28( 3): 223-229.
doi: 10.1177/0969141320973690
[16]   黄永兰, 唐诚芳, 刘思迟, 等. 广州市原发性肉碱缺乏症新生儿筛查评估及SLC22A5基因变异谱特征[J]. 中华儿科杂志, 2020, 58(6): 476-481
HUANG Yonglan, TANG Chengfang, LIU Sichi, et al. Newborn screening for primary carnitine deficiency and variant spectrum of SLC22A5 gene in Guangzhou [J]. Chinese Journal of Pediatrics, 2020, 58(6): 476-481. (in Chinese)
[17]   LEEN C, TANGN L S, CHIENY H, et al.Diagnoses of newborns and mothers with carnitine uptake defects through newborn screening[J]Mol Genet Metab, 2010, 100( 1): 46-50.
doi: 10.1016/j.ymgme.2009.12.015
[18]   马胜举, 赵德华, 马 坤, 等. 河南省2013—2019年新生儿遗传代谢病筛查回顾性分析[J]. 检验医学与临床, 2020, 17(14): 1965-1968
MA Shengju, ZHAO Dehua, MA Kun, et al. Retrospective analysis on screening of neonates inherited metabolic diseases from 2013 to 2019 in Henan province[J]. Laboratory Medicine and Clinic, 2020, 17(14): 1965-1968. (in Chinese)
[19]   裴 薇, 鹿相花, 田维兵, 等. 潍坊地区新生儿遗传代谢病串联质谱筛查结果分析[J]. 中国中西医结合儿科学, 2018, 10(5): 452-455
PEI Wei, LU Xianghua, TIAN Weibing, et al. Analysis of screening results of tandem mass spectrometry for neonatal genetic metabolic diseases in Weifang region [J]. Chinese Pediatrics of Integrated Traditional and Western Medicine, 2018, 10(5): 452-455. (in Chinese)
[20]   唐诚芳, 李 蓓, 蒋 翔, 等. 广州市2007年至2016年新生儿高苯丙氨酸血症筛查结果及36例苯丙氨酸羟化酶缺乏症患儿基因分析[J]. 中华围产医学杂志, 2018, 21(5): 329-333
TANG Chengfang, LI Bei, JIANG Xiang, et al. Screening for neonatal inborn errors of hyperphenylalanineemia in Guangzhou from 2007 to 2016 and genetic analysis of 36 children with phenylalanine hydroxylase deficiency [J]. Chinese Journal of Perinatal Medicine, 2018, 21(5): 329-333. (in Chinese)
[21]   唐诚芳, 冯 毅, 徐 伟, 等. 广州市Citrin缺乏症新生儿筛查及SLC25A13基因变异分子流行病学特征[J]. 中华实用儿科临床杂志, 2020, 35(11): 838-841
TANG Chengfang, FENG Yi, XU Wei, et al. Newborn screening for Citrin deficiency and molecular characteristics of SLC25A13 variants in Guangzhou population [J]. Chinese Journal of Applied Clinical Pediatrics, 2020, 35(11): 838-841. (in Chinese)
[22]   唐诚芳, 刘思迟, 冯 毅, 等. 希特林蛋白缺乏症新生儿早期血氨基酸谱特征及新生儿筛查评估[J]. 中华儿科杂志, 2019, 57(10): 797-801
TANG Chengfang, LIU Sichi, FENG Yi, et al. Newborn screening program and blood amino acid profiling in early neonates with citrin deficiency[J]. Chinese Journal of Pediatrics, 2019, 57(10): 797-801. (in Chinese)
[23]   黄新文, 张 玉, 洪 芳, 等. 浙江省新生儿氨基酸代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 233-239
HUANG Xinwen, ZHANG Yu, HONG Fang, et al. Screening for amino acid metabolic disorders of newborns in Zhejiang province: prevalence, outcome and follow-up [J]. Journal of Zhejiang University (Medical Sciences), 2017, 46(3): 233-239. (in Chinese)
[24]   TANGC, LIUS, WUM, et al.Clinical and molecular characteristics of carnitine-acylcarnitine translocase deficiency: experience with six patients in Guangdong China[J]Clin Chim Acta, 2019, 476-480.
doi: 10.1016/j.cca.2019.05.018
[25]   康路路, 刘玉鹏, 沈 鸣, 等. 314例单纯型甲基丙二酸血症的临床表型和基因型研究[J]. 中华儿科杂志, 2020, 58(6): 468-475
KANG Lulu, LIU Yupeng, SHEN Ming, et al. The phenotypes and genotypes in 314 patients with isolated methylmalonic academia [J]. Chinese Journal of Pediatrics, 2020, 58(6): 468-475. (in Chinese)
[26]   封志纯, 张万巧. 遗传代谢病筛查诊断系统的现状及未来发展[J]. 中华围产医学杂志, 2021, 24(2): 81-84
FENG Zhichun, ZHANG Wanqiao. Screening and diagnosis system for inherited metabolic diseases: present and future developments [J]. Chinese Journal of Perinatal Medicine, 2021, 24(2): 81-84. (in Chinese)
[27]   HALLP L, MARQUARDTG, MCHUGHD M S, et al.Postanalytical tools improve performance of newborn screening by tandem mass spectrometry[J]Genet Med, 2014, 16( 12): 889-895.
doi: 10.1038/gim.2014.62
[28]   张 超, 胡真真, 杨建滨, 等. Region 4 Stork系统在串联质谱新生儿极长链酰基辅酶A脱氢酶缺乏症筛查中的应用[J]. 中华检验医学杂志, 2020, 43(10): 978-983
ZHANG Chao, HU Zhenzhen, YANG Jianbin, et al. Application of Region 4 Stork system in the neonatal screening for very long chain acyl‐CoA dehydrogenase deficiency by tandem mass spectrometry [J]. Chinese Journal of Laboratory Medicine, 2020, 43(10): 978-983. (in Chinese)
[29]   杨茹莱, 杨艳玲, 王 挺, 等. 新生儿遗传代谢病人工智能疾病风险评估模型的建立及验证[J]. 中华儿科杂志, 2021, 59(4): 286-293
YANG Rulai, YANG Yanling, WANG Ting, et al. Establishment of an auxiliary diagnosis system of newborn screening for inherited metabolic diseases based on artificial intelligence technology and a clinical trial [J]. Chinese Journal of Pediatrics, 2021, 59(4): 286-293. (in Chinese)
[30]   ESTRELLAJ, WILCKENB, CARPENTERK, et al.Expanded newborn screening in New South Wales: missed cases[J]J Inherit Metab Dis, 2014, 37( 6): 881-887.
doi: 10.1007/s10545-014-9727-2
[31]   应艳琴, 罗小平. 新生儿遗传代谢病筛查与基因诊断的现状与展望[J]. 中华围产医学杂志, 2021, 24(2): 85-88
YING Yanqin, LUO Xiaoping. Screening and genetic diagnosis of neonatal inherited metabolic diseases: present and prospects [J]. Chinese Journal of Perinatal Medicine, 2021, 24(2): 85-88. (in Chinese)
[1] HAN Lianshu. Genetic screening techniques and diseases for neonatal genetic diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 429-435.
[2] YU Yue,LING Shiying,SHUAI Ruixue,QIU Wenjuan,ZHANG Huiwen,LIANG Lili,JI Wenjun,LIU Yuchao,GU Xuefan,HAN Lianshu. Clinical features and outcomes of patients with cblC type methylmalonic acidemia carrying MMACHC gene c.609G>A mutation[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 436-443.
[3] ZHOU Duo,YE Meiling,HU Zhenzhen,ZHANG Yu,ZHU Lin,YANG Rulai,HUANG Xinwen. Screening of multiple acyl-CoA dehydrogenase deficiency in newborns and follow-up of patients[J]. J Zhejiang Univ (Med Sci), 2021, 50(4): 454-462.
[4] XU Weize,YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang. Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 548-555.
[5] HU Zhenzhen,YANG Jianbin,HU Lingwei,ZHAO Yunfei,ZHANG Chao,YANG Rulai,HUANG Xinwen. Screening and clinical analysis of isovaleric acidemia newborn in Zhejiang province[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 556-564.
[6] HUANG Shumin,ZHAO Zhengyan. Advances in newborn screening and immune system reconstitution of severe combined immunodeficiency[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 351-357.
[7] WU Dingwen,LU Bin,YANG Jianbin,YANG Rulai,HUANG Xinwen,TONG Fan,ZHENG Jing,ZHAO Zhengyan. Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 390-396.
[8] TONG Fan,YANG Rulai,LIU Chang,WU Dingwen,ZHANG Ting,HUANG Xinwen,HONG Fang,QIAN Guling,HUANG Xiaolei,ZHOU Xuelian,SHU Qiang,ZHAO Zhengyan. Screening for hereditary tyrosinemia and genotype analysis in newborns[J]. J Zhejiang Univ (Med Sci), 2019, 48(4): 459-464.
[9] HUANG Xinwen, ZHANG Yu, HONG Fang, ZHENG Jing, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for amino acid metabolic disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 233-239.
[10] ZHU Hui, MIAO Zhengyou, QIAN Yeqing, LI Hongge, JIN Jinglei, HE Jing, DONG Minyue. Detection of cell-free fetal DNA in maternal plasma for noninvasive prenatal screening of fetal chromosomal aneuploidies in women of advanced maternal age[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 256-261.
[11] HONG Fang, HUANG Xinwen, ZHANG Yu, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan. Screening for newborn organic aciduria in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 240-247.
[12] ZHENG Jing, ZHANG Yu, HONG Fang, YANG Jianbin, TONG Fan, MAO Huaqing, HUANG Xiaolei, ZHOU Xuelian, YANG Rulai, ZHAO Zhengyan, HUANG Xinwen. Screening for fatty acid oxidation disorders of newborns in Zhejiang province:prevalence, outcome and follow-up[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 248-255.
[13] LI Enshu, YE Xiaoqun, FANG Li, YE Yinghui. Effect of oxygen concentration on outcome of in-vitro fertilization-embryo transfer[J]. J Zhejiang Univ (Med Sci), 2017, 46(3): 290-294.