Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (5): 627-632    DOI: 10.3724/zdxbyxb-2021-0242
    
Metformin alleviates intestinal epithelial barrier damage by inhibiting endoplasmic reticulum stress-induced cell apoptosis in colitis cell model
WANG Jingang1,2,CHEN Chunxiao1,*(),REN Yuhan2,ZHOU Xinxin1,YU Shan2
1. Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
2. Department of Gastroenterology, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, Shengzhou People’s Hospital, Shengzhou 312400, Zhejiang Province, China
Download: HTML( 21 )   PDF(3644KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To investigate the effect and mechanism of metformin on intestinal epithelial barrier injury in ulcerative colitis. Methods:A cell model of colitis was established by co-culture of human colon cancer cell line Caco-2 and human monocyte cell line THP-1. The colitis model cells were treated with metformin at concentration of 1?mmol/L for 24?h. Flow cytometry was used to detect Caco-2 cell apoptosis, and Western blotting was used to detect the protein expression of tight junction proteins and endoplasmic reticulum stress-related proteins. Results: After metformin treatment, the apoptosis rate of Caco-2 cells was decreased from (14.22±2.34)% to (9.88±0.61)% (t=3.119, P<0.05), and the expression levels of tight junction protein-1 and claudin-1 increased (t=5.172 and 3.546, both P<0.05). In addition, the expression levels of endoplasmic reticulum-related proteins glucose regulated protein (GRP) 78, C/EBP homologous protein (CHOP) and caspase-12, as well as the phosphorylation level of PRKR-like endoplasmic reticulum kinase (PERK) and eukaryotic translation initiation factor 2α (eIF2α) decreased (allP<0.05).Conclusion:Metformin may alleviate the intestinal epithelial barrier damage in colitis by reducing intestinal epithelial cell apoptosis and increasing the expression of tight junction proteins, which may be associated with the inhibition of endoplasmic reticulum stress-induced apoptotic pathway.



Key wordsColitis, ulcerative      Metformin      Endoplasmic reticulum stress      Apoptosis      Co-culture cell      Tight junction protein     
Received: 10 July 2021      Published: 29 December 2021
CLC:  R310.17  
Corresponding Authors: CHEN Chunxiao     E-mail: 13906523922@126.com
Cite this article:

WANG Jingang,CHEN Chunxiao,REN Yuhan,ZHOU Xinxin,YU Shan. Metformin alleviates intestinal epithelial barrier damage by inhibiting endoplasmic reticulum stress-induced cell apoptosis in colitis cell model. J Zhejiang Univ (Med Sci), 2021, 50(5): 627-632.

URL:

https://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0242     OR     https://www.zjujournals.com/med/Y2021/V50/I5/627


二甲双胍通过抑制内质网应激诱导的细胞凋亡改善结肠炎黏膜上皮屏障损伤

目的:探讨二甲双胍对溃疡性结肠炎黏膜上皮屏障损伤的作用及具体机制。方法:用人结肠癌细胞系Caco-2与人单核细胞系THP-1构建结肠炎体外细胞共培养模型,用1?mmol/L二甲双胍作用24?h后,运用流式细胞术检测肠上皮细胞凋亡情况,采用蛋白质印迹法检测紧密连接蛋白和内质网应激相关蛋白的表达水平。结果:与模型对照组比较,二甲双胍组细胞凋亡率从(14.22±2.34)%下降至(9.88±0.61)%(t=3.119,P<0.05),紧密连接蛋白1和密封蛋白1相对表达量增加(t=5.172和3.546,均P<0.05),内质网分子伴侣葡萄糖调节蛋白(GRP)78和内质网应激诱导的凋亡相关分子C/EBP同源蛋白(CHOP)、胱天蛋白酶(caspase)-12的蛋白表达水平下降(均P<0.05),蛋白激酶R样内质网激酶(PERK)和真核生物起始因子2α(eIF2α)的磷酸化水平下降(均P<0.05)。结论:二甲双胍可以通过减轻结肠炎肠上皮细胞的细胞凋亡和增加紧密连接蛋白的表达改善结肠炎肠黏膜上皮屏障损伤,其分子机制可能与抑制内质网应激诱导的细胞凋亡途径有关。


关键词: 结肠炎, 溃疡性,  二甲双胍,  内质网应激,  细胞凋亡,  细胞共培养,  紧密连接蛋白 
Figure 1 The flow cytometry analysis of intestinal epithelial cell apoptosis in model group and metformin group
Figure 2 Electrophoregrams of tight junction proteins in model group and metformin group
Figure 3 Electrophoregrams of endoplasmic retculum stress associated proteins in model group and metformin group

组别

n

GRP78

CHOP

caspase-12

磷酸化PERK/PERK

磷酸化eIF2α/eIF2α

模型对照组

3

1.145±0.048

1.127±0.061

1.173±0.076

0.822±0.012

0.818±0.057

二甲双胍组

3

0.925±0.138

0.760±0.148

0.985±0.045

0.650±0.065

0.568±0.126

t

3.018

4.586

3.691

5.197

3.618

P

<0.05

<0.01

<0.05

<0.05

<0.05

Table 1 Expression of endoplasmic reticulum stress associated proteins in model group and metformin group
[1]   PETERSONL W, ARTISD. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]Nat Rev Immunol, 2014, 14( 3): 141-153.
doi: 10.1038/nri3608
[2]   NGS C, SHIH Y, HAMIDIN, et al.Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]Lancet, 2017, 390( 10114): 2769-2778.
doi: 10.1016/S0140-6736(17)32448-0
[3]   HIRTENR P, SANDSB E. New therapeutics for ulcerative colitis[J]Annu Rev Med, 2021, 72( 1): 199-213.
doi: 10.1146/annurev-med-052919-120048
[4]   MAX S, DAIZ L, SUNK J, et al.Intestinal epithelial cell endoplasmic reticulum stress and inflammatory bowel disease pathogenesis: an update review[J]Front Immunol, 2017, 1271.
doi: 10.3389/fimmu.2017.01271
[5]   EUGENES P, REDDYV S, TRINATHJ. Endoplasmic reticulum stress and intestinal inflammation: a perilous union[J]Front Immunol, 2020, 543022.
doi: 10.3389/fimmu.2020.543022
[6]   KASERA, BLUMBERGR S. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease[J]Semin Immunol, 2009, 21( 3): 156-163.
doi: 10.1016/j.smim.2009.01.001
[7]   BAIB, CHENH B. Metformin: a novel weapon against inflammation[J]Front Pharmacol, 2021, 622262.
doi: 10.3389/fphar.2021.622262
[8]   CHEN Y C, LI H, WANG J. Mechanisms of metformin inhibiting cancer invasion and migration[J]. Am J Transl Res, 2020, 12(9): 4885-4901
[9]   SOUKASA A, HAOH, WUL. Metformin as anti-aging therapy: is it for everyone?[J]Trends Endocrinol Metab, 2019, 30( 10): 745-755.
doi: 10.1016/j.tem.2019.07.015
[10]   HEL. Metformin and systemic metabolism[J]Trends Pharmacol Sci, 2020, 41( 11): 868-881.
doi: 10.1016/j.tips.2020.09.001
[11]   CHENL, WANGJ, YOUQ, et al.Activating AMPK to restore tight junction assembly in intestinal epithelium and to attenuate experimental colitis by metformin[J]Front Pharmacol, 2018, 761.
doi: 10.3389/fphar.2018.00761
[12]   DENGJ, ZENGL, LAIX, et al.Metformin protects against intestinal barrier dysfunction via AMPKα1-dependent inhibition of JNK signalling activation[J]J Cell Mol Med, 2018, 22( 1): 546-557.
doi: 10.1111/jcmm.13342
[13]   DI FUSCOD, DINALLOV, MONTELEONEI, et al.Metformin inhibits inflammatory signals in the gut by controlling AMPK and p38 MAP kinase activation[J]Clin Sci, 2018, 132( 11): 1155-1168.
doi: 10.1042/CS20180167
[14]   EL-MAHDYN A, EL-SAYADM E S, EL-KADEMA H, et al.Metformin alleviates inflammation in oxazolone induced ulcerative colitis in rats: plausible role of sphingosine kinase 1/sphingosine 1 phosphate signaling pathway[J]Immunopharmacol Immunotoxicol, 2021, 43( 2): 192-202.
doi: 10.1080/08923973.2021.1878214
[15]   LIUX, SUNZ, WANGH. Metformin alleviates experimental colitis in mice by up-regulating TGF-β signaling[J]Biotech Histochem, 2021, 96( 2): 146-152.
doi: 10.1080/10520295.2020.1776896
[16]   PANDEYA, VERMAS, KUMARV L. Metformin maintains mucosal integrity in experimental model of colitis by inhibiting oxidative stress and pro-inflammatory signaling[J]Biomed Pharmacother, 2017, 1121-1128.
doi: 10.1016/j.biopha.2017.08.020
[17]   RENM T, GUM L, ZHOUX X, et al.Sirtuin 1 alleviates endoplasmic reticulum stress-mediated apoptosis of intestinal epithelial cells in ulcerative colitis[J]World J Gastroenterol, 2019, 25( 38): 5800-5813.
doi: 10.3748/wjg.v25.i38.5800
[18]   VAN DER POSTS, JABBARK S, BIRCHENOUGHG, et al.Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis[J]Gut, 2019, 68( 12): 2142-2151.
doi: 10.1136/gutjnl-2018-317571
[19]   PARADIST, BèGUEH, BASMACIYANL, et al.Tight junctions as a key for pathogens invasion in intestinal epithelial cells[J]Int J Mol Sci, 2021, 22( 5): 2506.
doi: 10.3390/ijms22052506
[20]   TANY, GUANY, SUNY, et al.Correlation of intestinal mucosal healing and tight junction protein expression in ulcerative colitis patients[J]Am J Med Sci, 2019, 357( 3): 195-204.
doi: 10.1016/j.amjms.2018.11.011
[21]   TSENGC H. Metformin use is associated with a lower risk of inflammatory bowel disease in patients with type 2 diabetes mellitus[J]J Crohns Colitis, 2021, 15( 1): 64-73.
doi: 10.1093/ecco-jcc/jjaa136
[22]   LUM, LAWRENCED A, MARSTERSS, et al.Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis[J]Science, 2014, 345( 6192): 98-101.
doi: 10.1126/science.1254312
[23]   KASERA, LEEA H, FRANKEA, et al.XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease[J]Cell, 2008, 134( 5): 743-756.
doi: 10.1016/j.cell.2008.07.021
[24]   YONEDAT, IMAIZUMIK, OONOK, et al.Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress[J]J Biol Chem, 2001, 276( 17): 13935-13940.
doi: 10.1074/jbc.M010677200
[1] ZHANG Dongmei,CAO Qilu,JING Linlin,ZHAO Xiuhua,MA Huiping. Establishment of a hypobaric hypoxia-induced cell injury model in PC12 cells[J]. J Zhejiang Univ (Med Sci), 2021, 50(5): 614-620.
[2] LI Yang,LI Weiguang,FENG Zeguo,SONG Jie,ZHANG Chenggang,HUANG Lianjun,SONG Yanping. Effect of operative trauma and multiple propofol anesthesia on neurodevelopment and cognitive function in developmental rats[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 290-297.
[3] HUANG Zhuoqun,YU Xiafei,LIU Xingyu,MA Kang,HUANG Minghua,LI Fangfang,YANG Wei,NIU Jianguo. Protective effect of transient receptor potential melastatin 2 inhibitor A10 on oxygen glucose deprivation/reperfusion model[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 106-112.
[4] YE Jiayi,GONG Hengpei,WANG Lingfeng,HUANG Zhen,QIU Fengmei,ZHONG Xiaoming. Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 705-713.
[5] FANG Juan,PAN Zhicheng,GUO Xiaogang. Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 113-117.
[6] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[7] MA Jing, HE Wenlong, GAO Chongyang, YU Ruiyun, XUE Peng, NIU Yongchao. Glucosides of chaenomeles speciosa attenuate ischemia/reperfusion-induced brain injury by regulating NF-κB P65/TNF-α in mouse model[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 289-295.
[8] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[9] XIAO Li,TONG Xiaoyong. Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 102-110.
[10] LIANG Gang, NIU Yumiao, LI Yihan, Wei Anyi, DONG Jingyin, ZENG Linghui. Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 443-449.
[11] LIN Kana,LIN Meili,GU Yingfen,ZHANG Shunguo,HUANG Shiying. G protein-coupled receptor 17 is involved in CoCl2-induced hypoxic injury in RGC-5 cells[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 487-492.
[12] LIN Meina,XU Ruiyuan,ZHANG Tao,ZHANG Lin,MEI Xuqiao. Expression of c-FLIP in peripheral blood mononuclear cells of patients with rheumatoid arthritis and its relation with extrinsic apoptotic pathway[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 381-388.
[13] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[14] TIAN Hua, CHEN Yang, ZHAO Jiangang, LIU Daren, LIANG Gang, GONG Weihua, CHEN Li, WU Yulian. Effects of siRNAs targeting CD97 immune epitopes on biological behavior in breast cancer cell line MDA-MB231[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 341-348.
[15] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.