Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (3): 369-374    DOI: 10.3724/zdxbyxb-2021-0188
    
Development of a nomogram for predicting survival of patients with ovarian serous cystadenocarcinoma after surgery based on SEER database
CHEN Xiaobin(),GUO Tingting
Department of Obstetrics and Gynecology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
Download: HTML( 3 )   PDF(2623KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To develop a survival time prediction model for patients with ovarian serous cystadenocarcinoma after surgery.Methods:A retrospective analysis of 5906 postoperative patients with ovarian serous cystadenocarcinoma in the surveillance, epidemiology, and end results (SEER) database from 2010 to 2015 was performed. The independent risk factors for long-term survival were analyzed with multivariate Cox proportional hazard regression model. The nomogram of 3-year and 5-year survival was developed by using R language. The receiver operator characteristic (ROC) curve and C-index were used to test the discrimination of the model and the calibration diagram was used to evaluate the degree of calibration of the prediction model. The survival curves was conducted by the risk factors. Results: Cox proportional hazard regression model showed that age, race, histological grade (poorly differentiated and undifferentiated), stage T (T2a, T2b, T2c, T3a, T3b and T3c), and stage M (M1) were independent factors for the prognosis of patients with ovarian serous cystadenocarcinoma after surgery. A nomogram was developed by the R language tool for predicting the 3-year and 5-year survival of patients through age, race, histological classification, stage T and stage M. The C-index was 0.688 and the areas under ROC curve of the nomogram for predicting 3-year and 5-year survival were 0.708 and 0.716, respectively. The results of the calibration indicated that the predicted values were consistent with the actual values in the prediction models. The survival time of patients with high-risk factors was shorter than that of patients with low-risk factors (P<0.05).Conclusion:The developed nomogram in this study can be used to predict 3-year and 5-year survival of postoperative patients with ovarian serous cystadenocarcinoma, and it may be beneficial to guide clinical treatment.



Key wordsSerous cystadenocarcinoma      SEER database      Forecasting model      Nomogram      Survival analysis     
Received: 15 December 2020      Published: 16 August 2021
CLC:  R71  
Corresponding Authors: CHEN Xiaobin     E-mail: chenxb2019@zju.edu.cn
Cite this article:

CHEN Xiaobin,GUO Tingting. Development of a nomogram for predicting survival of patients with ovarian serous cystadenocarcinoma after surgery based on SEER database. J Zhejiang Univ (Med Sci), 2021, 50(3): 369-374.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0188     OR     http://www.zjujournals.com/med/Y2021/V50/I3/369


基于SEER数据库建立预测卵巢浆液性囊腺癌术后患者生存时间列线图

目的:建立卵巢浆液性囊腺癌患者手术后生存时间预测模型并绘制列线图。方法:回顾性分析监测、流行病学和结果(SEER)数据库2010至2015年5906例诊断为卵巢浆液性囊腺癌手术后患者的资料,通过多因素Cox比例风险回归模型得到其远期存活的独立危险因素。采用R语言绘制患者术后3年和5年存活率的列线图,用受试者操作特征曲线及C指数检验模型的区分度,校准图检验其校准度,并对其独立危险因素进行生存分析。结果:Cox比例风险回归模型分析结果显示,年龄、种族、组织学分级(低分化和未分化)、T分期(T2a、T2b、T2c、T3a、T3b、T3c)、M分期(M1)是卵巢浆液性囊腺癌手术后患者预后的独立危险因素(均P<0.01)。建立的列线图能迅速通过年龄、种族、组织学分级、T分期、M分期预测患者术后3年和5年的存活率。列线图C指数为0.688,预测患者术后3年和5年存活率的列线图的曲线下面积分别为0.708、0.716。校准图显示患者术后3年和5年存活率的列线图模型与实际模型一致性尚可。具有高危因素的患者生存时间短于具有低危因素的患者(P<0.05)。结论:本研究基于SEER数据库建立的预测卵巢浆液性囊腺癌术后患者生存时间的列线图有助于临床评估。


关键词: 浆液性囊腺癌,  SEER数据库,  预测模型,  列线图,  生存分析 

因 素

例数(%)

HR(95% CI

P

年龄

?

<40岁

160 (2.7)

参考值

40~<50岁

739 (12.5)

1.956(1.234~3.100)

<0.01

50~<60岁

1593 (27.0)

2.219(1.416~3.477)

<0.01

60~<70岁

1875 (31.7)

2.765(1.769~4.320)

<0.01

70~<80岁

1132 (19.2)

3.483(2.223~5.459)

<0.01

≥80岁

407 (6.9)

6.961(4.397~11.021)

<0.01

种族

?

黑种人

410 (6.9)

参考值

白种人

4993 (84.5)

0.645(0.553~0.752)

<0.01

其他

503 (8.5)

0.611(0.492~0.759)

<0.01

组织学分级

?

高分化

181 (3.1)

参考值

中分化

453 (7.7)

1.167(0.786~1.734)

>0.05

低分化

2540 (43.0)

1.623(1.138~2.315)

<0.01

未分化

2732 (46.3)

1.659(1.163~2.367)

<0.01

T分期

?

T1a

291 (4.9)

参考值

T1b

81 (1.4)

0.514(0.217~1.220)

>0.05

T1c

409 (6.9)

1.001(0.660~1.519)

>0.05

T2a

251 (4.2)

1.705(1.122~2.591)

<0.05

T2b

304 (5.1)

1.955(1.319~2.900)

<0.01

T2c

410 (6.9)

2.078(1.427~3.028)

<0.01

T3a

274 (4.6)

2.163 (1.457~3.210)

<0.01

T3b

511 (8.7)

2.601(1.816~3.725)

<0.01

T3c

3375 (57.1)

4.006(2.877~ 5.577)

<0.01

N分期

?

N0

4124 (69.8)

参考值

?

N1

1782 (30.2)

1.002(0.913~1.100)

>0.05

M分期

?

M0

4726 (80.0)

参考值

?

M1

1180 (20.0)

1.609(1.460~1.774)

<0.01

Table 1 Results of Cox regression analysis on the postoperative survival of 5906 patients with ovarian serous cystadenocarcinoma
Figure 1 The nomogram of the 3-year and 5-year survival rate prediction model for patients with ovarian serous cystadenocarcinoma after surgery
Figure 2 Receiver operator characteristic curves of 3-year and 5-year survival rate prediction model for patients with ovarian serous cystadenocarcinoma after surgery
Figure 3 Calibration curves of 3-year and 5-year survival rate nomogram model for patients with ovarian serous cystadenocarcinoma after surgery
Figure 4 The post-operative survival curves of ovarian serous cystadenocarcinoma patients with high-risk and low-risk factors
[1]   MELAMEDA, MANNING-GEISTB, BREGARA J, et al.Associations between residual disease and survival in epithelial ovarian cancer by histologic type[J]Gynecol Oncol, 2017, 147( 2): 250-256.
doi: 10.1016/j.ygyno.2017.08.003
[2]   SINGHA, GUPTAS, SACHANM. Epigenetic biomarkers in the management of ovarian cancer: current prospectives[J]Front Cell Dev Biol, 2019, 182.
doi: 10.3389/fcell.2019.00182
[3]   FORTNERR T, OSEJ, MERRITTM A, et al.Reproductive and hormone-related risk factors for epithelial ovarian cancer by histologic pathways, invasiveness and histologic subtypes: results from the EPIC cohort[J]Int J Cancer, 2015, 137( 5): 1196-1208.
doi: 10.1002/ijc.29471
[4]   KARIMI-ZARCHI M, MORTAZAVIZADEH S M, BASHARDUST N, et al. The clinicopathologic characteristics and 5-year survival rate of epithelial ovarian cancer in yazd, Iran[J]. Electron Physician, 2015, 7(6): 1399-1406
[5]   KARABUKE, KOSEM F, HIZLID, et al.Comparison of advanced stage mucinous epithelial ovarian cancer and serous epithelial ovarian cancer with regard to chemosensitivity and survival outcome: a matched case-control study[J]J Gynecol Oncol, 2013, 24( 2): 160.
doi: 10.3802/jgo.2013.24.2.160
[6]   KUMPULAINENS, GRéNMANS, KYYR?NENP, et al.Evidence of benefit from centralised treatment of ovarian cancer: a nationwide population-based survival analysis in Finland[J]Int J Cancer, 2002, 102( 5): 541-544.
doi: 10.1002/ijc.10754
[7]   SARDIJ E, ANCHEZARP, BERMUDEZA. Favorable clinical behavior in young ovarian carcinoma patients: a rationale for conservative surgery?[J]Int J Gynecol Cancer, 2005, 15( 5): 762-769.
doi: 10.1111/j.1525-1438.2005.00133.x
[8]   PECORELLIS, ZIGLIANIL, ODICINOF. Revised FIGO staging for carcinoma of the cervix[J]Int J GynEcol Obstet, 2009, 105( 2): 107-108.
doi: 10.1016/j.ijgo.2009.02.009
[9]   刘传忠, 李 力, 赵冰冰. ⅢC~Ⅳ期上皮性卵巢癌预后影响因素分析[J]. 国际妇产科学杂志, 2018, 45(6): 648-651, 657
LIU Chuanzhong, LI Li, ZHAO Bingbing. Analysis of prognostic factors for stage ⅢC or Ⅳ epithelial ovarian cancer[J]. Journal of International Obstetrics and Gynecology, 2018, 45(6): 648-651, 657. (in Chinese)
[10]   KIRWANJ M J, TINCELLOD G, HERODJ J O, et al.Effect of delays in primary care referral on survival of women with epithelial ovarian cancer: retrospective audit[J]BMJ, 2002, 324( 7330): 148-151.
doi: 10.1136/bmj.324.7330.148
[1] FU Yuanyuan,JIANG Jingxin,CHEN Shuzheng,QIU Fuming. Establishment of risk prediction nomogram for ipsilateral axillary lymph node metastasis in T1 breast cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 81-89.
[2] TANG Huijuan,JIANG Xiyi,LOU Jianlin,CHEN Tianhui. Methodology for survival assessment of cancer patients using population-based cancer registration data[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 104-109.