Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (3): 383-389    DOI: 10.3724/zdxbyxb-2021-0184
    
Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease
WANG Jintao(),HUANG Lei,WEI Lili,CHEN Wei()
Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
Download: HTML( 16 )   PDF(2045KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Repetitive transcranial magnetic stimulation (rTMS) is a safe and non-invasive technique. In recent years, many studies have demonstrated that rTMS can improve cognitive function in Alzheimer’s disease (AD) patients and has potential as a therapeutic method for AD. However, the efficacy varies greatly with different rTMS treatment regimens, which is related to the frequency, type, location, duration, intensity and focusing power of stimulation. Recent studies have shown that high-frequency stimulation is superior to low-frequency stimulation; efficacy of intermittent theta burst stimulation (iTBS) is similar to that of conventional rTMS, but iTBS treatment session is shorter and might be more acceptable for AD patients; rTMS stimulation sites targeting AD-damaged brain regions or associated networks would be more effective; short-term intensive treatment combined with long-term maintenance treatment can gain long-term efficacy; dynamic adjustment of stimulus intensity combined with the degree of cognitive impairment can enhance the efficacy; functional connection based on functional magnetic resonance imaging may improve the focusing power of rTMS. In this article, we review the factors related to the efficacy of rTMS, to provide reference for feasible rTMS therapeutic regimens of AD.



Key wordsAlzheimer’s disease      Repetitive transcranial magnetic stimulation      Cognition      Therapy      Influence factor      Review     
Received: 25 February 2021      Published: 16 August 2021
CLC:  R749.1  
Corresponding Authors: CHEN Wei     E-mail: wangjt@zju.edu.cn;srrcw@zju.edu.cn
Cite this article:

WANG Jintao,HUANG Lei,WEI Lili,CHEN Wei. Factors affecting the efficacy of repetitive transcranial magnetic stimulation for patients with Alzheimer’s disease. J Zhejiang Univ (Med Sci), 2021, 50(3): 383-389.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0184     OR     http://www.zjujournals.com/med/Y2021/V50/I3/383


重复经颅磁刺激治疗阿尔茨海默病患者的疗效影响因素

重复经颅磁刺激(rTMS)是一种安全的非侵入性干预技术,在改善阿尔茨海默病(AD)患者的认知功能上取得了一定的效果,不同rTMS治疗方案之间的疗效差异可能与其刺激频率、模式、部位、维持时间、强度、聚焦能力等因素有关。研究表明,高频rTMS的疗效优于低频;间接θ爆发刺激与常规rTMS疗效相当,但每次治疗时间短,患者依从性增加;刺激AD患者受损脑区或关联网络可增加疗效;短期强化治疗与长期维持治疗结合可维持疗效;结合认知损害程度动态调整刺激强度可增加疗效;利用磁共振功能连接方法等技术可解决rTMS的聚焦能力。本综述分析了上述影响因素,为今后rTMS治疗AD的临床方案设计提供思路。


关键词: 阿尔茨海默病,  重复经颅磁刺激,  认知,  治疗,  影响因素,  综述 
[1]   JIAL, DUY, CHUL, et al.Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J/OL]Lancet Public Health, 2020, 5( 12): e661-e671.
doi: 10.1016/S2468-2667(20)30185-7
[2]   JIAJ, WEIC, CHENS, et al.The cost of Alzheimer’s disease in China and re-estimation of costs worldwide[J]Alzheimers Dement, 2018, 14( 4): 483-491.
doi: 10.1016/j.jalz.2017.12.006
[3]   KRANTICS. Editorial: from current diagnostic tools and therapeutics for Alzheimer’s disease towards earlier diagnostic markers and treatment targets[J]Curr Alzheimer Res, 2017, 14( 1): 2-5.
doi: 10.2174/156720501401161201104858
[4]   VANDENBERGHER, RINNEJ O, BOADAM, et al.Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials[J]Alzheimers Res Ther, 2016, 8( 1): 18.
doi: 10.1186/s13195-016-0189-7
[5]   KITAMURAS, NAKAMURAY, HOMMAA, et al.Tolerability and efficacy of the long-term administration of memantine hydrochloride (Memary?) in patients with moderate to severe Alzheimer’s disease[J]Nippon Ronen Igakkai Zasshi, 2014, 51( 1): 74-84.
doi: 10.3143/geriatrics.51.74
[6]   XIAOS, CHANP, WANGT, et al.A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia[J]Alzheimers Res Ther, 2021, 13( 1): 62.
doi: 10.1186/s13195-021-00795-7
[7]   CUMMINGSJ, LEEG, RITTERA, et al.Alzheimer’s disease drug development pipeline: 2019[J]Alzheimers Dement, 2019, 5( 1): 272-293.
doi: 10.1016/j.trci.2019.05.008
[8]   WASSERMANNE M, LISANBYS H. Therapeutic application of repetitive transcranial magnetic stimulation: a review[J]Clin NeuroPhysiol, 2001, 112( 8): 1367-1377.
doi: 10.1016/S1388-2457(01)00585-5
[9]   LEFAUCHEURJ P, ALEMANA, BAEKENC, et al.Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018)[J]Clin NeuroPhysiol, 2020, 131( 2): 474-528.
doi: 10.1016/j.clinph.2019.11.002
[10]   GONSALVEZI, BARORR, FRIEDP, et al.Therapeutic noninvasive brain stimulation in Alzheimer’s disease[J]Curr Alzheimer Res, 2017, 14( 4): 362-376.
doi: 10.2174/1567205013666160930113907
[11]   KLOMJAIW, KATZR, LACKMY-VALLéEA. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)[J]Ann Phys Rehabil Med, 2015, 58( 4): 208-213.
doi: 10.1016/j.rehab.2015.05.005
[12]   AHMEDM A, DARWISHE S, KHEDRE M, et al.Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia[J]J Neurol, 2012, 259( 1): 83-92.
doi: 10.1007/s00415-011-6128-4
[13]   LIAOX, LIG, WANGA, et al.Repetitive transcranial magnetic stimulation as an alternative therapy for cognitive impairment in Alzheimer’s disease: a meta-analysis[J]J Alzheimer Dis, 2015, 48( 2): 463-472.
doi: 10.3233/JAD-150346
[14]   CHENGC P W, WONGC S M, LEEK K, et al.Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: a systematic review and meta-analysis[J/OL]Int J Geriatr Psychiatry, 2018, 33( 1): e1-e13.
doi: 10.1002/gps.4726
[15]   WANGX, MAOZ, LINGZ, et al.Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: a meta-analysis of randomized controlled trials[J]J Neurol, 2020, 267( 3): 791-801.
doi: 10.1007/s00415-019-09644-y
[16]   ESSERS K, HUBERR, MASSIMINIM, et al.A direct demonstration of cortical LTP in humans: a combined TMS/EEG study[J]Brain Res Bull, 2006, 69( 1): 86-94.
doi: 10.1016/j.brainresbull.2005.11.003
[17]   AUSTINB P, NAIRV A, MEIERT B, et al.Effects of hypoperfusion in Alzheimer’s disease[J]J Alzheimer Dis, 2011, 123-133.
doi: 10.3233/JAD-2011-0010
[18]   GUSEB, FALKAIP, WOBROCKT. Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review[J]J Neural Transm, 2010, 117( 1): 105-122.
doi: 10.1007/s00702-009-0333-7
[19]   LEFAUCHEURJ P, ANDRé-OBADIAN, ANTALA, et al.Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)[J]Clin NeuroPhysiol, 2014, 125( 11): 2150-2206.
doi: 10.1016/j.clinph.2014.05.021
[20]   HUANGY Z, EDWARDSM J, ROUNISE, et al.Theta burst stimulation of the human motor cortex[J]Neuron, 2005, 45( 2): 201-206.
doi: 10.1016/j.neuron.2004.12.033
[21]   WUX, JIG J, GENGZ, et al.Strengthened theta-burst transcranial magnetic stimulation as an adjunctive treatment for Alzheimer’s disease: an open-label pilot study[J]Brain Stimulation, 2020, 13( 2): 484-486.
doi: 10.1016/j.brs.2019.12.020
[22]   BLUMBERGERD M, VILA-RODRIGUEZF, THORPEK E, et al.Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial[J]Lancet, 2018, 391( 10131): 1683-1692.
doi: 10.1016/S0140-6736(18)30295-2
[23]   MENDLOWITZA B, SHANBOURA, DOWNARJ, et al.Implementation of intermittent theta burst stimulation compared to conventional repetitive transcranial magnetic stimulation in patients with treatment resistant depression: a cost analysis[J/OL]PLoS One, 2019, 14( 9): e0222546.
doi: 10.1371/journal.pone.0222546
[24]   ROTENBERG A, HORVATH J C, PASCUAL‐LEONE A. Transcranial magnetic stimulation[M]. New York: Springer, 2014: 235-257
[25]   COTELLIM, MANENTIR, CAPPAS F, et al.Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease[J]Arch Neurol, 2006, 63( 11): 1602-1604.
doi: 10.1001/archneur.63.11.1602
[26]   COTELLIM, MANENTIR, CAPPAS F, et al.Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline[J]Eur J Neurol, 2008, 15( 12): 1286-1292.
doi: 10.1111/j.1468-1331.2008.02202.x
[27]   COTELLIM, CALABRIAM, MANENTIR, et al.Improved language performance in Alzheimer disease following brain stimulation[J]J Neurol Neurosurg Psychiatry, 2011, 82( 7): 794-797.
doi: 10.1136/jnnp.2009.197848
[28]   PADALAP R, BOOZERE M, LENSINGS Y, et al.Neuromodulation for apathy in Alzheimer’s disease: a double-blind, randomized, sham-controlled pilot study[J]J Alzheimer Dis, 2020, 77( 4): 1483-1493.
doi: 10.3233/JAD-200640
[29]   CHOUY H, TON THATV, SUNDMANM. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease[J]NeuroBiol Aging, 2020, 1-10.
doi: 10.1016/j.neurobiolaging.2019.08.020
[30]   ELIASOVAI, ANDERKOVAL, MARECEKR, et al.Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: a pilot study[J]J Neurological Sci, 2014, 346( 1-2): 318-322.
doi: 10.1016/j.jns.2014.08.036
[31]   KOCHG, BONNìS, PELLICCIARIM C, et al.Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease[J]NeuroImage, 2018, 302-311.
doi: 10.1016/j.neuroimage.2017.12.048
[32]   ALCALá-LOZANOR, MORELOS-SANTANAE, CORTéS-SOTRESJ F, et al.Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer’s disease[J]Brain Stimul, 2018, 11( 3): 625-627.
doi: 10.1016/j.brs.2017.12.011
[33]   LINY, JIANGW J, SHANP Y, et al.The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer’s disease: a systematic review and meta-analysis[J]J Neurol Sci, 2019, 184-191.
doi: 10.1016/j.jns.2019.01.038
[34]   NARDONER, SEBASTIANELLIL, VERSACEV, et al.TMS-EEG co-registration in patients with mild cognitive impairment, Alzheimer’s disease and other dementias: a systematic review[J]Brain Sci, 2021, 11( 3): 303.
doi: 10.3390/brainsci11030303
[35]   IIMORIT, NAKAJIMAS, MIYAZAKIT, et al.Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: a systematic review[J]Prog Neuro-PsychoPharmacol Biol Psychiatry, 2019, 31-40.
doi: 10.1016/j.pnpbp.2018.06.014
[36]   ZHOUJ, SEELEYW W. Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry[J]Biol Psychiatry, 2014, 75( 7): 565-573.
doi: 10.1016/j.biopsych.2014.01.020
[37]   LIX, QIG, YUC, et al.Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment[J]Brain Stimul, 2021, 14( 3): 503-510.
doi: 10.1016/j.brs.2021.01.012
[38]   BENTWICHJ, DOBRONEVSKYE, AICHENBAUMS, et al.Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study[J]J Neural Transm, 2011, 118( 3): 463-471.
doi: 10.1007/s00702-010-0578-1
[39]   RABEYJ M, DOBRONEVSKYE, AICHENBAUMS, et al.Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study[J]J Neural Transm, 2013, 120( 5): 813-819.
doi: 10.1007/s00702-012-0902-z
[40]   LUBERB, LISANBYS H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS)[J]NeuroImage, 2014, 961-970.
doi: 10.1016/j.neuroimage.2013.06.007
[41]   CHUNGS W, ROGASCHN C, HOYK E, et al.Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS‐EEG and working memory performance[J]Hum Brain Mapp, 2018, 39( 2): 783-802.
doi: 10.1002/hbm.23882
[42]   K?HK?NENS, KOMSSIS, WILENIUSJ, et al.Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans[J]NeuroImage, 2005, 24( 4): 955-960.
doi: 10.1016/j.neuroimage.2004.09.048
[43]   BONNìS, LUPOF, LO GERFOE, et al.Altered parietal-motor connections in Alzheimer’s disease patients[J]J Alzheimer Dis, 2012, 33( 2): 525-533.
doi: 10.3233/JAD-2012-121144
[44]   PRESTONA R, EICHENBAUMH. Interplay of hippocampus and prefrontal cortex in memory[J]Curr Biol, 2013, 23( 17): R764-R773.
doi: 10.1016/j.cub.2013.05.041
[45]   OLSENR K, MOSESS N, RIGGSL, et al.The hippocampus supports multiple cognitive processes through relational binding and comparison[J]Front Hum Neurosci, 2012, 146.
doi: 10.3389/fnhum.2012.00146
[46]   BALLARD C, GAUTHIER S, CORBETT A et al. Alzheimer’s disease[J]. Lancet, 2011, 377: 1019-1031
[47]   SUTHANAN, HANEEFZ, STERNJ, et al.Memory enhancement and deep-brain stimulation of the entorhinal area[J]N Engl J Med, 2012, 366( 6): 502-510.
doi: 10.1056/NEJMoa1107212
[48]   JUNS, KIMJ S, CHUNGC K. Direct stimulation of human hippocampus during verbal associative encoding enhances subsequent memory recollection[J]Front Hum Neurosci, 2019, 23.
doi: 10.3389/fnhum.2019.00023
[49]   ROTHY, AMIRA, LEVKOVITZY, et al.Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils[J]J Clin NeuroPhysiol, 2007, 24( 1): 31-38.
doi: 10.1097/WNP.0b013e31802fa393
[50]   ROTHY, PELLG S, CHISTYAKOVA V, et al.Motor cortex activation by H-coil and figure-8 coil at different depths. Combined motor threshold and electric field distribution study[J]Clin NeuroPhysiol, 2014, 125( 2): 336-343.
doi: 10.1016/j.clinph.2013.07.013
[51]   LUM, UENOS. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation[J/OL]PLoS One, 2017, 12( 6): e0178422.
doi: 10.1371/journal.pone.0178422
[52]   WANGJ X, ROGERSL M, GROSSE Z, et al.Targeted enhancement of cortical-hippocampal brain networks and associative memory[J]Science, 2014, 345( 6200): 1054-1057.
doi: 10.1126/science.1252900
[53]   WANGH, JINJ, CUID, et al.Cortico-hippocampal brain connectivity-guided repetitive transcranial magnetic stimulation enhances face-cued word-based associative memory in the short term[J]Front Hum Neurosci, 2020, 541791.
doi: 10.3389/fnhum.2020.541791
[54]   CUIX, RENW, ZHENGZ, et al.Repetitive transcranial magnetic stimulation improved source memory and modulated recollection-based retrieval in healthy older adults[J]Front Psychol, 2020, 1137.
doi: 10.3389/fpsyg.2020.01137
[55]   FREEDBERGM, REEVESJ A, TOADERA C, et al.Optimizing hippocampal-cortical network modulation via repetitive transcranial magnetic stimulation: a dose-finding study using the continual reassessment method[J]Neuromodulation, 2020, 23( 3): 366-372.
doi: 10.1111/ner.13052
[56]   FREEDBERGM, REEVESJ A, TOADERA C, et al.Persistent enhancement of hippocampal network connectivity by parietal rtms is reproducible[J]eNeuro, 2019, 6( 5): ENEURO.0129-19.2019.
[57]   HERMILLERM S, KARPE, NILAKANTANA S, et al.Episodic memory improvements due to noninvasive stimulation targeting the cortical-hippocampal network: a replication and extension experiment[J/OL]Brain Behav, 2019, 9( 12): e01393.
doi: 10.1002/brb3.1393
[58]   TAYLORJ L, HAMBROB C, STROSSMANN D, et al.The effects of repetitive transcranial magnetic stimulation in older adults with mild cognitive impairment: a protocol for a randomized, controlled three-arm trial[J]BMC Neurol, 2019, 19( 1): 326.
doi: 10.1186/s12883-019-1552-7
[59]   VELIOGLUH A, HANOGLUL, BAYRAKTAROGLUZ, et al.Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer’s disease: possible role of BDNF and oxidative stress[J]NeuroBiol Learn Mem, 2021, 107410.
doi: 10.1016/j.nlm.2021.107410
[1] HU Jingyi,WANG Qingqing,LIU Yang. Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 396-402.
[2] GE Yingzhou,LIU Xinmei,HUANG Hefeng. Advances in the role of silence information regulator family in pathological pregnancy[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 335-344.
[3] SHI Jinbo,LI Xiawei,WU Yulian. Whether early stage pancreatic ductal adenocarcinoma patients could benefit from the post-operation chemotherapy regimens: a SEER-based propensity score matching study[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 375-382.
[4] LIU Junxia,ZHAO Guigui,NIU Yan,GAN Ting,YAN Zhenyu,ZHANG Yasu. Effect of electro-acupuncture therapy on limb spasm and excitability of motor neurons in stroke rats[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 361-368.
[5] REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.
[6] YING Yingchao,JIANG Peifang. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 267-276.
[7] KUANG Wenjing,LUO Xiaobo,WANG Jiongke,ZENG Xin. Research progress on Melkersson-Rosenthal syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 148-154.
[8] WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.
[9] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[10] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[11] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[12] YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.
[13] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[14] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[15] MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.