Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (3): 335-344    DOI: 10.3724/zdxbyxb-2021-0183
    
Advances in the role of silence information regulator family in pathological pregnancy
GE Yingzhou12(),LIU Xinmei12,HUANG Hefeng1,23,*()
1. International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; 2. Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China;
3. Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
Download: HTML( 8 )   PDF(2425KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aberrant maternal inflammation and oxidative stress are the two main mechanisms of pathological pregnancy. The silence information regulator (sirtuin) family is a highly conserved family of nicotinamide adenine dinucleotide (NAD)-dependent deacylases. By regulating the post-translational modification of proteins, sirtuin is involved in various biological processes including oxidative stress and inflammation. Nowadays, emerging evidence indicates that sirtuin may be closely related to the occurrence and development of pathological pregnancy. The down-regulation of sirtuin can cause spontaneous preterm delivery by promoting uterine contraction and rupture of fetal membranes, cause gestational diabetes mellitus through promoting oxidative stress and affecting the activity of key enzymes in glucose metabolism, cause preeclampsia by reducing the proliferation and invasion ability of trophoblasts, cause intrahepatic cholestasis of pregnancy by promoting the production of bile acids and T helper 1 cell (Th1) cytokines, and cause intrauterine growth restriction through inducing mitochondrial dysfunction. Moreover, the expression and activation of sirtuin can be modulated through dietary interventions, thus sirtuin is expected to become a new target for the prevention and treatment of pregnancy complications. This article reviews the role of the sirtuin family in the occurrence and development of pathological pregnancy and its influence on the development of the offspring.



Key wordsSilence information regulator      Premature delivery      Gestational diabetes mellitus      Preeclampsia      Intrahepatic cholestasis of pregnancy      Intrauterine growth restriction      Review     
Received: 29 January 2021      Published: 16 August 2021
CLC:  R714.2  
Corresponding Authors: HUANG Hefeng     E-mail: geyingzhou@163.com;huanghefg@hotmail.com
Cite this article:

GE Yingzhou,LIU Xinmei,HUANG Hefeng. Advances in the role of silence information regulator family in pathological pregnancy. J Zhejiang Univ (Med Sci), 2021, 50(3): 335-344.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0183     OR     http://www.zjujournals.com/med/Y2021/V50/I3/335


沉默信息调节因子家族参与病理妊娠的研究进展

异常的母体炎症反应及氧化应激是病理妊娠的两大致病机制。沉默信息调节因子(sirtuin)家族是一类高度保守的烟酰胺腺嘌呤二核苷酸依赖性脱酰基酶,通过调控蛋白的翻译后修饰,广泛参与包括氧化应激和炎症反应在内的多种生理过程,与病理妊娠的发生发展密切相关。其表达下降可通过促进子宫收缩及胎膜破裂引起自发性早产、通过干扰糖代谢关键酶活性及促进氧化应激诱发妊娠糖尿病、通过降低滋养细胞增殖及侵袭能力导致子痫前期、通过促进辅助性T细胞1型细胞因子及胆汁酸的生成引起妊娠肝内胆汁淤积症,也可通过诱发线粒体功能障碍导致胎儿生长受限。此外,sirtuin的表达及活化可通过饮食调节,故未来有望成为妊娠相关疾病预防和治疗的新靶点。本文回顾了sirtuin家族在病理妊娠发生发展中的作用及其对此类患者子代发育影响的最新研究进展。


关键词: 沉默信息调节因子,  早产,  妊娠糖尿病,  子痫前期,  妊娠肝内胆汁淤积症,  胎儿生长受限,  综述 
[1]   LIX, ZHOUJ, FANGM, et al.Pregnancy immune tolerance at the maternal-fetal interface[J]Int Rev Immunol, 2020, 39( 6): 247-263.
doi: 10.1080/08830185.2020.1777292
[2]   杨春娜, 张星莹, 李甜甜, 等. 病理妊娠与氧化应激的相关性研究进展[J]. 青岛大学学报(医学版), 2020, 56(5): 624-626
YANG Chunna, ZHANG Xingying, LI Tiantian, et al. Research advances in the association between pathological pregnancy and oxidative stress[J]. Journal of Qingdao University (Medical Sciences), 2020, 56(5): 624-626. (in Chinese)
[3]   OSBORNEB, BENTLEYN L, MONTGOMERYM K, et al.The role of mitochondrial sirtuins in health and disease[J]Free Radical Biol Med, 2016, 164-174.
doi: 10.1016/j.freeradbiomed.2016.04.197
[4]   KRATZE M, SO?KIEWICZK, KUBIS-KUBIAKA, et al.sirtuins as important factors in pathological states and the role of their molecular activity modulators[J]Int J Mol Sci, 2021, 22( 2): 630.
doi: 10.3390/ijms22020630
[5]   SINGHC K, CHHABRAG, NDIAYEM A, et al.The role of sirtuins in antioxidant and redox signaling[J]Antioxid Redox Signal, 2018, 28( 8): 643-661.
doi: 10.1089/ars.2017.7290
[6]   OHATAY, MATSUKAWAS, MORIYAMAY, et al.sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos[J]Dev Growth Differ, 2014, 56( 6): 460-468.
doi: 10.1111/dgd.12145
[7]   CHENZ, GONGL, ZHANGP, et al.Epigenetic down-regulation of Sirt 1 via DNA methylation and oxidative stress signaling contributes to the gestational diabetes mellitus-induced fetal programming of heart ischemia-sensitive phenotype in late life[J]Int J Biol Sci, 2019, 15( 6): 1240-1251.
doi: 10.7150/ijbs.33044
[8]   FRANCESCHELLIS, PESCEM, FERRONEA, et al.A novel biological role of α-mangostin in modulating inflammatory response through the activation of SIRT-1 signaling pathway[J]J Cell Physiol, 2016, 231( 11): 2439-2451.
doi: 10.1002/jcp.25348
[9]   SANTOS-BARRIOPEDROI, VAQUEROA. Complex role of SIRT6 in NF-κB pathway regulation[J/OL]Mol Cell Oncol, 2018, 5( 4): e1445942.
doi: 10.1080/23723556.2018.1445942
[10]   TAOY, HUANGC, HUANGY, et al.SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells[J]Cardiovasc Toxicol, 2015, 15( 3): 217-223.
doi: 10.1007/s12012-014-9287-6
[11]   WANGF, WANGK, XUW, et al.SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice[J]Cell Rep, 2017, 19( 11): 2331-2344.
doi: 10.1016/j.celrep.2017.05.065
[12]   HOUY, WANGY, HEQ, et al.Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury[J]Behav Brain Res, 2018, 336( 15): 32-39.
doi: 10.1016/j.bbr.2017.06.027
[13]   YOOND S, CHOIY, LEEJ W. Cellular localization of NRF2 determines the self-renewal and osteogenic differentiation potential of human MSCs via the P53-SIRT1 axis[J/OL]Cell Death Dis, 2016, 7( 2): e2093.
doi: 10.1038/cddis.2016.3
[14]   ZHOUL, WANGF, SUNR, et al.SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense[J]EMBO Rep, 2016, 17( 6): 811-822.
doi: 10.15252/embr.201541643
[15]   BROWNK D, MAQSOODS, HUANGJ Y, et al.Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss[J]Cell Metab, 2014, 20( 6): 1059-1068.
doi: 10.1016/j.cmet.2014.11.003
[16]   TSENGA H H, WUL H, SHIEHS S, et al.SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia[J]Biochem J, 2014, 464( 1): 157-168.
doi: 10.1042/bj20140213
[17]   PANH, GUAND, LIUX, et al.SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2[J]Cell Res, 2016, 26( 2): 190-205.
doi: 10.1038/cr.2016.4
[18]   LAPPASM, MITTONA, LIMR, et al.SIRT1 is a novel regulator of key pathways of human labor1[J]Biol Reprod, 2011, 84( 1): 167-178.
doi: 10.1095/biolreprod.110.086983
[19]   GOLDENBERGR L, HAUTHJ C, ANDREWSW W. Intrauterine infection and preterm delivery[J]N Engl J Med, 2000, 342( 20): 1500-1507.
doi: 10.1056/nejm200005183422007
[20]   ROMEROR, DEYS K, FISHERS J. Preterm labor: one syndrome, many causes[J]Science, 2014, 345( 6198): 760-765.
doi: 10.1126/science.1251816
[21]   WANGW S, LIW J, WANGY W, et al.Involvement of serum amyloid A1 in the rupture of fetal membranes through induction of collagen I degradation[J]Clin Sci, 2019, 133( 3): 515-530.
doi: 10.1042/cs20180950
[22]   LIMR, BARKERG, LAPPASM. SIRT6 is decreased with preterm labor and regulates key terminal effector pathways of human labor in fetal membranes1[J]Biol Reprod, 2013, 88( 1): 17-.
doi: 10.1095/biolreprod.112.105163
[23]   LIMR, BARKERG, MENONR, et al.A novel role for SIRT3 in regulating mediators involved in the terminal pathways of human labor and delivery[J]Biol Reprod, 2016, 95( 5): 95.
doi: 10.1095/biolreprod.116.142372
[24]   FENGL, ALLENT K, MARINELLOW P, et al.Roles of progesterone receptor membrane component 1 in oxidative stress-induced aging in chorion cells[J]Reprod Sci, 2019, 26( 3): 394-403.
doi: 10.1177/1933719118776790
[25]   NORTHB J, MARSHALLB L, BORRAM T, et al.The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase[J]Mol Cell, 2003, 11( 2): 437-444.
doi: 10.1016/s1097-2765(03)00038-8
[26]   MOORER M, MANSOURJ M, REDLINER W, et al.The physiology of fetal membrane rupture: insight gained from the determination of physical properties[J]Placenta, 2006, 27( 11-12): 1037-1051.
doi: 10.1016/j.placenta.2006.01.002
[27]   ZHUY, ZHANGC. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective[J]Curr Diab Rep, 2016, 16( 1): 7.
doi: 10.1007/s11892-015-0699-x
[28]   KHAND, SARIKHANIM, DASGUPTAS, et al.SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart[J]J Cell Physiol, 2018, 233( 7): 5478-5489.
doi: 10.1002/jcp.26434
[29]   LAPPASM, ANDRIKOPOULOSS, PERMEZELM. Hypoxanthine-xanthine oxidase down-regulates GLUT1 transcription via SIRT1 resulting in decreased glucose uptake in human placenta[J]J Endocrinol, 2012, 213( 1): 49-57.
doi: 10.1530/joe-11-0355
[30]   HIRSCHEYM D, SHIMAZUT, JINGE, et al.SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome[J]Mol Cell, 2011, 44( 2): 177-190.
doi: 10.1016/j.molcel.2011.07.019
[31]   SULTANS, ALZAHRANIN, AL-SAKKAFK. The postpartum effect of maternal diabetes on the circulating levels of sirtuins and superoxide dismutase[J]FEBS Open Bio, 2018, 8( 2): 256-263.
doi: 10.1002/2211-5463.12370
[32]   GUIJ, POTTHASTA, ROHRBACHA, et al.Gestational diabetes induces alterations of sirtuins in fetal endothelial cells[J]Pediatr Res, 2016, 79( 5): 788-798.
doi: 10.1038/pr.2015.269
[33]   王 莉, 王 瑜, 武海英. 尼克酰胺降低妊娠期糖尿病大鼠的血糖水平以及调控线粒体超氧水平研究[J]. 浙江大学学报(医学版), 2017, 46(2): 179-185
WANG Li, WANG Yu, WU Haiying. Nicotinamide regulates blood glucose level and affects mitochondrial superoxide level in gestational diabetic rats[J]. Journal of Zhejiang University (Medical Sciences), 2017, 46(2): 179-185. (in Chinese)
[34]   FACCHINETTIF, CAVALLIP, COPPA J, et al.An update on the use of inositols in preventing gestational diabetes mellitus (GDM) and neural tube defects (NTDs)[J]Expert Opin Drug Metab Toxicol, 2020, 16( 12): 1187-1198.
doi: 10.1080/17425255.2020.1828344
[35]   YUJ, WUY, YANGP. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects[J]J Neurochem, 2016, 137( 3): 371-383.
doi: 10.1111/jnc.13587
[36]   YANGP, XUC, REECEE A, et al.Tip60- and sirtuin 2-regulated MARCKS acetylation and phosphorylation are required for diabetic embryopathy[J]Nat Commun, 2019, 10( 1): 282.
doi: 10.1038/s41467-018-08268-6
[37]   JIS, ZHOUW, LIX, et al.Maternal hyperglycemia disturbs neocortical neurogenesis via epigenetic regulation in C57BL/6J mice[J]Cell Death Dis, 2019, 10( 3): 211.
doi: 10.1038/s41419-019-1438-z
[38]   KANEA E, SINCLAIRD A. sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases[J]Circ Res, 2018, 123( 7): 868-885.
doi: 10.1161/circresaha.118.312498
[39]   BALESTRIERIM L, RIENZOM, FELICEF, et al.High glucose downregulates endothelial progenitor cell number via SIRT1[J]BioChim Biophysica Acta, 2008, 1784( 6): 936-945.
doi: 10.1016/j.bbapap.2008.03.004
[40]   LEYBOVITZ-HALELUYAN, WAINSTOCKT, LANDAUD, et al.Maternal gestational diabetes mellitus and the risk of subsequent pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18 years of follow up[J]Acta Diabetol, 2018, 55( 10): 1037-1042.
doi: 10.1007/s00592-018-1176-1
[41]   GRUNNETL G, HANSENS, HJORTL, et al.Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the danish national birth cohort[J]Diabetes Care, 2017, 40( 12): 1746-1755.
doi: 10.2337/dc17-0514
[42]   ARMALYZ, JADAONJ E, JABBOURA, et al.Preeclampsia: novel mechanisms and potential therapeutic approaches[J]Front Physiol, 2018, 973.
doi: 10.3389/fphys.2018.00973
[43]   PHIPPSE, PRASANNAD, BRIMAW, et al.Preeclampsia: updates in pathogenesis, definitions, and guidelines[J]Clin J Am Soc Nephrol, 2016, 11( 6): 1102-1113.
doi: 10.2215/cjn.12081115
[44]   HANNANN J, BEARDS, BINDERN K, et al.Key players of the necroptosis pathway RIPK1 and SIRT2 are altered in placenta from preeclampsia and fetal growth restriction[J]Placenta, 2017, 1-9.
doi: 10.1016/j.placenta.2017.01.002
[45]   BROADYA J, LOICHINGERM H, AHNH J, et al.Protective proteins and telomere length in placentas from patients with pre-eclampsia in the last trimester of gestation[J]Placenta, 2017, 44-52.
doi: 10.1016/j.placenta.2016.12.018
[46]   周冰皓, 邱 菊, 田艳杰, 等. miR-34 a和SIRT1在子痫前期患者胎盘中的表达及意义[J]. 河北医药, 2020, 42(8): 1144-1147
ZHOU Binghao, QIU Ju, TIAN Yanjie, et al. Expressions and significance of MiR-34a and SIRT1 in placenta of patients with preeclampsia[J]. Hebei Medical Journal, 2020, 42(8): 1144-1147. (in Chinese)
[47]   VIANA-MATTIOLIS, NUNESP, CAVALLIR, et al.Analysis of SIRT1 expression in plasma and in an in vitro model of preeclampsia[J]Oxid Med Cell Longev, 2020, 4561083.
doi: 10.1155/2020/4561083
[48]   YUY C, ANX Q, FAND M. Histone deacetylase sirtuin 2 enhances viability of trophoblasts through p65-mediated microRNA-146a/ACKR2 axis[J]Reprod Sci, 2021, 28( 5): 1370-1381.
doi: 10.1007/s43032-020-00398-x
[49]   NADEAU-VALLéEM, OBARID, PALACIOSJ, et al.Sterile inflammation and pregnancy complications: a review[J]Reproduction, 2016, 152( 6): R277-R292.
doi: 10.1530/rep-16-0453
[50]   JIANGR, CAIJ, ZHUZ, et al.Hypoxic trophoblast HMGB1 induces endothelial cell hyperpermeability via the TRL-4/caveolin-1 pathway[J]J Immunol, 2014, 193( 10): 5000-5012.
doi: 10.4049/jimmunol.1303445
[51]   YINY, FENGY, ZHAOH, et al.SIRT1 inhibits releases of HMGB1 and HSP70 from human umbilical vein endothelial cells caused by IL-6 and the serum from a preeclampsia patient and protects the cells from death[J]Biomed PharmacoTher, 2017, 449-458.
doi: 10.1016/j.biopha.2017.01.087
[52]   WANGP, HUANGC X, GAOJ J, et al.Resveratrol induces SIRT1-dependent autophagy to prevent H2O2-induced oxidative stress and apoptosis in HTR8/SVneo cells[J]Placenta, 2020, 11-18.
doi: 10.1016/j.placenta.2020.01.002
[53]   SANDVO?M, POTTHASTA B, VON VERSEN-H?YNCKF, et al.HELLP Syndrome: altered hypoxic response of the fatty acid oxidation regulator SIRT4[J]Reprod Sci, 2017, 24( 4): 568-574.
doi: 10.1177/1933719116667216
[54]   LAURENTG, GERMANN J, SAHAA K, et al.SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase[J]Mol Cell, 2013, 50( 5): 686-698.
doi: 10.1016/j.molcel.2013.05.012
[55]   VIANA-MATTIOLIS, CINEGAGLIAN, BERTOZZI-MATHEUSM, et al.SIRT1-dependent effects of resveratrol and grape juice in an in vitro model of preeclampsia[J]Biomed PharmacoTher, 2020, 110659.
doi: 10.1016/j.biopha.2020.110659
[56]   LEEK M, SEOH W, KWONM S, et al.SIRT1 negatively regulates invasive and angiogenic activities of the extravillous trophoblast[J/OL]Am J Reprod Immunol, 2019, 82( 4): e13167.
doi: 10.1111/aji.13167
[57]   HIRSCHFIELDG M, MASONA, LUKETICV, et al.Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid[J]Gastroenterology, 2015, 148( 4): 751-761.e8.
doi: 10.1053/j.gastro.2014.12.005
[58]   SMITHD D, ROODK M. Intrahepatic cholestasis of pregnancy[J]Clin Obstet Gynecol, 2020, 63( 1): 134-151.
doi: 10.1097/grf.0000000000000495
[59]   赵 健, 高坚蓉, 王 珊. 妊娠期肝内胆汁淤积症患者胎盘miR-34a、去乙酰化酶1表达及与胎儿缺氧的关系[J]. 中国妇幼保健, 2019, 34(19): 4554-4557
ZHAO Jian, GAO Jianrong, WANG Shan. Expression of placenta miR-34a and deacetylase 1 in intrahepatic cholestasis of pregnancy and its relationship with fetal hypoxia[J]. Maternal and Child Health Care of China, 2019, 34(19): 4554-4557. (in Chinese)
[60]   DUQ, ZHANGY, PANY, et al.Lithocholic acid-induced placental tumor necrosis factor-α upregulation and syncytiotrophoblast cell apoptosis in intrahepatic cholestasis of pregnancy[J]Hepatol Res, 2014, 44( 5): 532-541.
doi: 10.1111/hepr.12150
[61]   金 萍, 邵 勇. 妊娠期肝内胆汁淤积症患者血清中白细胞介素18、12及肿瘤坏死因子α的水平变化及其临床意义[J]. 中华妇产科杂志, 2011, 46(5): 329-332
JIN Ping, SHAO Yong. Expression and significance of interleukin-18, 12 and tumor necrosis factor-α in intrahepatic cholestasis of pregnancy[J]. Chinese Journal of Obstetrics and Gynecology, 2011, 46(5): 329-332. (in Chinese)
[62]   丘创华, 侯 敢, 黄迪南. TNF-α信号传导通路的分子机理[J]. 中国生物化学与分子生物学报, 2007, 23(6): 430-435
QIU Chuanghua, HOU Gan, HUANG Dinan. Molecular mechanism of TNF-α signal transduction[J]. Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(6): 430-435. (in Chinese)
[63]   FRESCASD, VALENTIL, ACCILID. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes[J]J Biol Chem, 2005, 280( 21): 20589-20595.
doi: 10.1074/jbc.M412357200
[64]   CHANDAD, XIEY B, CHOIH S. Transcriptional corepressor SHP recruits SIRT1 histone deacetylase to inhibit LRH-1 transactivation[J]Nucleic Acids Res, 2010, 38( 14): 4607-4619.
doi: 10.1093/nar/gkq227
[65]   KULKARNIS R, SOROKAC J, HAGEYL R, et al.sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis[J]Hepatology, 2016, 64( 6): 2151-2164.
doi: 10.1002/hep.28826
[66]   李治遵, 邵 勇. 白藜芦醇通过促进SIRT1表达,抑制NF-κB和TNF-α表达抵抗牛磺胆酸诱导的胎盘合体滋养细胞HTR-8的炎症损伤[J]. 中国生物化学与分子生物学报, 2016, 32(5): 552-560
LI Zhizun, SHAO Yong. Resveratrol protects placenta cytotrophoblast HTR-8 cells against taurocholic acid-induced inflammatory injury by up-regulation of SIRT1 and down-regulation of NF-κB and TNF-α[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(5): 552-560. (in Chinese)
[67]   张 莹, 王 红. 熊去氧胆酸与地塞米松联合应用对重度妊娠期肝内胆汁淤积症患者的临床治疗效果、血清SIRT1/NF-κB p65信号通路及炎症因子的影响[J]. 中国妇幼保健, 2019, 34(14): 3216-3220
ZHANG Ying, WANG Hong. Clinical efficacy of ursodeoxycholic acid combined with dexamethasone in treatment of severe intrahepatic cholestasis of pregnancy and the influence on serum SIRT1/NF-κB p65 signaling pathway and inflammatory factors[J]. Maternal and Child Health Care of China, 2019, 34(14): 3216-3220. (in Chinese)
[68]   LIUJ, WANGX F, WANGY, et al.The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction[J/OL]Medicine, 2014, 93( 27): e210.
doi: 10.1097/md.0000000000000210
[69]   FIGUERASF, GRATACOSE. An integrated approach to fetal growth restriction[J]Best Pract Res Clin Obstet Gynaecol, 2017, 48-58.
doi: 10.1016/j.bpobgyn.2016.10.006
[70]   GUITART-MAMPELM, JUAREZ-FLORESD L, YOUSSEFL, et al.Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling[J]J Cell Mol Med, 2019, 23( 6): 3962-3973.
doi: 10.1111/jcmm.14282
[71]   SEHGALA, SKILTONM R, CRISPIF. Human fetal growth restriction: a cardiovascular journey through to adolescence[J]J Dev Orig Health Dis, 2016, 7( 6): 626-635.
doi: 10.1017/s2040174416000337
[72]   SARVARIS I, RODRIGUEZ-LOPEZM, NU?EZ-GARCIAM, et al.Persistence of cardiac remodeling in preadolescents with fetal growth restriction[J/OL]Circ Cardiovasc Imaging, 2017, 10( 1): e005270.
doi: 10.1161/circimaging.116.005270
[73]   GEVAR, ESHELR, LEITNERY, et al.Memory functions of children born with asymmetric intrauterine growth restriction[J]Brain Res, 2006, 1117( 1): 186-194.
doi: 10.1016/j.brainres.2006.08.004
[74]   CHENJ, GONGX, HUANGL, et al.MiR-199a-5p regulates sirtuin1 and PI3K in the rat hippocampus with intrauterine growth restriction[J]Sci Rep, 2018, 8( 1): 13813.
doi: 10.1038/s41598-018-32189-5
[75]   LIC, LIUZ, YANGK, et al.miR-133b inhibits glioma cell proliferation and invasion by targeting Sirt1[J]Oncotarget, 2016, 7( 24): 36247-36254.
doi: 10.18632/oncotarget.9198
[76]   FORDJ, JIANGM, MILNERJ. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival[J]Cancer Res, 2005, 65( 22): 10457-10463.
doi: 10.1158/0008-5472.Can-05-1923
[77]   GUITART-MAMPELM, GONZALEZ-TENDEROA, NI?EROLAS, et al.Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction[J]BioChim Biophys Acta Gen Subj, 2018, 1862( 5): 1157-1167.
doi: 10.1016/j.bbagen.2018.02.006
[78]   CAGLAYANE K, ENGIN-USTUNY, GOCMENA Y, et al.Is there any relationship between serum sirtuin-1 level and neutrophil-lymphocyte ratio in hyperemesis gravidarum?[J]J Perinat Med, 2016, 44( 3): 315-320.
doi: 10.1515/jpm-2015-0178
[79]   LUOS C, DUANK M, FANGC, et al.Correlations between SIRT genetic polymorphisms and postpartum depressive symptoms in Chinese parturients who had undergone cesarean section[J]Neuropsychiatr Dis Treat, 2020, 3225-3238.
doi: 10.2147/ndt.S278248
[80]   SANDOVAL-ACU?AC, FERREIRAJ, SPEISKYH. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions[J]Arch Biochem Biophys, 2014, 75-90.
doi: 10.1016/j.abb.2014.05.017
[1] HU Jingyi,WANG Qingqing,LIU Yang. Research progress on proteasome subunits in regulating occurrence and development of hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 396-402.
[2] CHEN Yunyan,WU Qi,ZHANG Lixia,CHEN Danqing,LIANG Zhaoxia. Relationship of abnormal mid-term oral glucose tolerance test and maternal weight gain with adverse pregnancy outcomes in women with gestational diabetes mellitus[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 313-319.
[3] XU Heng,MA Yan,ZHANG Lixia,LIANG Zhaoxia,CHEN Danqing. Impact of pre-pregnancy body mass index, weight gain and blood lipid level during pregnancy on pregnancy outcome in patients with gestational diabetes mellitus[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 320-328.
[4] ZHOU Yumei,XIE Ni,ZHANG Lixia,CHEN Danqing. Impact of family history of diabetes on blood glucose, lipid levels and perinatal outcomes in pregnant women with gestational diabetes mellitus[J]. J Zhejiang Univ (Med Sci), 2021, 50(3): 329-334.
[5] KUANG Wenjing,LUO Xiaobo,WANG Jiongke,ZENG Xin. Research progress on Melkersson-Rosenthal syndrome[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 148-154.
[6] WANG Chenyu,WANG Yingnan,WANG Cunyi,SHI Jiejun,WANG Huiming. Research progress on tissue engineering in repairing temporo-mandibular joint[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 212-221.
[7] REN Chaojie,ZHONG Danni,ZHOU Min. Research progress on the biomedical application of microalgae[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 261-266.
[8] YING Yingchao,JIANG Peifang. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 267-276.
[9] SHAO Yiming,SU Lide,HAO Rui,WANG Qianqian,NARANMANDURA Hua. Advances on molecular mechanism of hepatitis B virus-induced hepatocellular carcinoma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 113-122.
[10] HAN Hengyi,FENG Fan,LI Haitao. Research advances on epigenetics and cancer metabolism[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 1-16.
[11] CHEN Fei,YU Min,ZHONG Yonghong,HUA Wen,HUANG Huaqiong. The role of neutrophils in asthma[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 123-130.
[12] YAN Jing,ZHANG Tingting,ZHAO Kui. Application of molecular probes in nuclear imaging of neuroendocrine tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 131-137.
[13] ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.
[14] HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.
[15] MENG Ying,WANG Qifei,LYU Zhimin. Cholesterol metabolism and tumor[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 23-31.