|
|
Salt-inducible kinase 2 regulates energy metabolism in rats with cerebral ischemia-reperfusion |
ZHANG Ran12( ),LIU Yun12,ZHANG Cui1,MA Mengyao1,LI Shu12,*( ),HONG Yun3,*( ) |
1. Department of Pathophysiology, Wannan Medical College, Wuhu 241002, Anhui Province, China; 2. Clinical Colloge of Wannan Medical College, Wuhu 241002, Anhui Province, China; 3. Department of Ultrasonic Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui Province, China |
|
|
Abstract Objective:To investigate the effects of salt-inducible kinase 2 (SIK2) on energy metabolism in rats with cerebral ischemia-reperfusion. Methods: Adult SD male rats (240-260?g) were divided into 5 groups: sham group, ischemia group, reperfusion group, adenovirus no-load group, and SIK2 overexpression group with 5 animals in each group. The middle cerebral artery occlusion (MCAO) was induced with the modified Zea-Longa line thrombus method to establish the cerebral ischemia reperfusion model. Eight days before the MCAO, SIK2 overexpression was induced by injecting 7 μL adenovirus in the right ventricle, then MCAO was performed for 2?h, followed by reperfusion 24?h. HE staining was used to observe the pathological changes of cerebral tissue in rats; TTC staining was used to observe the volume of cerebral infarct. The levels of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) in rat brain tissue were detected by ELISA; the levels of SIK2 and hypoxia-inducible factor 1α (HIF-1α) in the rat brain tissues were detected by RT-qPCR and Western blotting. Results:Compared with the sham group, SIK2 level was decreased in the ischemia group, and it was further declined in the reperfusion group (P<0.05). Compared with the sham group and ischemic group, the pathological injury in reperfusion group were more severe, and the infarct size was larger; compared with the reperfusion group and adenovirus no-load group, the pathological injury of the SIK2 overexpression group was milder, and the infarct size is less. Compared with the sharn group, HIF-1α was increased in both ischemia group and reperfusion group, especially in ischemia group (allP<0.05); HIF-1α level in the SIK2 overexpression group was higher than that in the reperfusion group and adenovirus no-load group (allP<0.05). ATP level in ischemia group and reperfusion group was lower than that in the sham group, and the reperfusion group decreased more significantly than the ischemia group (P<0.05); ADP content was increased in the ischemia and reperfusion group, and the ADP content in reperfusion group was significantly higher than that in the ischemia group (P<0.05). ATP level in the SIK2 overexpression group was higher than that in the reperfusion group and adenovirus no-load group (allP<0.05), and ADP was decreased in the SIK2 overexpression group (allP<0.05).Conclusion:SIK2 can up-regulate the ATP level and down-regulate the ADP level in rat brain tissue and alleviate cerebral ischemia-reperfusion injury by increase the level of HIF-1α.
|
Received: 11 January 2021
Published: 16 August 2021
|
|
Corresponding Authors:
LI Shu,HONG Yun
E-mail: 18255366693@163.com;yxx2003@126.com
|
盐诱导激酶2对脑缺血再灌注大鼠脑组织能量代谢的影响
目的:探究盐诱导激酶2(SIK2)对脑缺血再灌注大鼠能量代谢相关物质表达的影响。方法:选用成年SD雄性大鼠(240~260?g),参照改良Zea-Longa线栓法建立大鼠短暂性中动脉栓塞模型(MCAO),在构建MCAO模型前8?d予以右侧脑室注射7?μL腺病毒使大鼠脑组织SIK2过表达,随后建立缺血2?h再灌注24?h模型。实验分为手术对照组、缺血对照组、缺血再灌注组、腺病毒空载组及SIK2过表达组。苏木精-伊红(HE)染色观察大鼠神经细胞损伤的病理学改变;氯化三苯基四氮唑(TTC)染色观察大鼠脑组织梗死情况;酶联免疫吸附试验(ELISA)检测各组大鼠脑组织中腺苷三磷酸(ATP)、腺苷二磷酸(ADP)的含量;荧光定量聚合酶链反应和蛋白质印迹法检测各组大鼠脑组织中SIK2及缺氧诱导因子1α(HIF-1α)的表达量。结果:与手术对照组比较,缺血对照组及缺血再灌注组SIK2表达减少,且缺血再灌注组较缺血对照组减少更明显(P<0.05);与手术对照组和缺血对照组比较,缺血再灌注组病理损伤较重,梗死体积较大;与缺血再灌注组和腺病毒空载组比较,SIK2过表达组病理损伤较轻,梗死体积减少。与手术对照组比较,缺血对照组和缺血再灌注组HIF-1α表达均增加,其中缺血对照组增加更明显(均P<0.05);SIK2过表达组HIF-1α表达比缺血再灌注组和腺病毒空载组均增多(均P<0.05)。与手术对照组比较,缺血对照组和缺血再灌注组ATP含量均减少,且缺血再灌注组较缺血对照组减少更为显著(P<0.05);ADP含量在缺血对照组和缺血再灌注组均增多,且缺血再灌注组较缺血对照组明显增多(P<0.05);与缺血再灌注组和腺病毒空载组比较,SIK2过表达组ATP含量增加(均P<0.05),ADP含量减少(均P<0.05)。结论:SIK2可通过上调HIF-1α的表达,增加大鼠脑组织中ATP的含量,减少ADP含量,减轻大鼠脑缺血再灌注损伤。
关键词:
缺血再灌注,
能量代谢,
盐诱导激酶2,
缺氧诱导因子1α,
腺苷三磷酸,
腺苷二磷酸,
SD大鼠
|
|
[1] |
盛桂芝, 王 波. 超早期溶栓治疗脑梗塞的疗效及影响因素探析[J]. 系统医学, 2019, 4(3): 62-64 SHENG Guizhi, WANG Bo. Analysis of the efficacy and influencing factors of ultra-early thrombolytic therapy for cerebral infarction[J]. Systems Medicine, 2019, 4(3): 62-64. (in Chinese)
|
|
|
[2] |
刘 磊, 刘丽华, 马玉奎. 脑缺血再灌注损伤机制研究进展[J]. 药学研究, 2016, 35(9): 542-544 LIU Lei, LIU Lihua, MA Yukui. Research progress on mechanisms of cerebral ischemia-reperfusion injury[J]. Journal of Pharmaceutical Research, 2016, 35(9): 542-544. (in Chinese)
|
|
|
[3] |
郭敏敏, 蔡 乐, 王 勇. 脑缺血再灌注损伤发病机制的研究进展[J]. 世界最新医学信息文摘, 2019, 19(30): 80-81 GUO Minmin, CAI Le, WANG Yong. Research progress on pathogenesis of cerebral ischemia-reperfusion injury[J]. World Latest Medicine Information, 2019, 19(30): 80-81. (in Chinese)
|
|
|
[4] |
UEBIT, ITOHY, HATANOO, et al.Involvement of SIK3 in glucose and lipid homeostasis in mice[J/OL]PLoS ONE, 2012, 7( 5): e37803.
doi: 10.1371/journal.pone.0037803
|
|
|
[5] |
KER, XUQ, LIC, et al.Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism[J]Cell Biol Int, 2018, 42( 4): 384-392.
doi: 10.1002/cbin.10915
|
|
|
[6] |
O’NEILLH M, MAARBJERGS J, CRANEJ D, et al.AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise[J]Proc Natl Acad Sci U S A, 2011, 108( 38): 16092-16097.
doi: 10.1073/pnas.1105062108
|
|
|
[7] |
LIZCANOJ M, G?RANSSONO, TOTHR, et al.LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1[J]EMBO J, 2004, 23( 4): 833-843.
doi: 10.1038/sj.emboj.7600110
|
|
|
[8] |
JALEELM, MCBRIDEA, LIZCANOJ M, et al.Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate[J]FEBS Lett, 2005, 579( 6): 1417-1423.
doi: 10.1016/j.febslet.2005.01.042
|
|
|
[9] |
YANGF C, TANB C M, CHENW H, et al.Reversible acetylation regulates salt-inducible kinase (SIK2) and its function in autophagy[J]J Biol Chem, 2013, 288( 9): 6227-6237.
doi: 10.1074/jbc.M112.431239
|
|
|
[10] |
赵 雷. 缺氧诱导因子-1α对脑缺血缺氧性损伤治疗作用的研究[D]. 石家庄: 河北医科大学, 2013 ZHAO Lei. Study on the therapeutic effect of hypoxia-inducible factor-1α on cerebral ischemia and hypoxic injury[D]. Shijiazhuang: Hebei Medical University, 2013. (in Chinese)
|
|
|
[11] |
宋慧琨. 缺氧诱导因子-1α在脑缺血中的作用及其机制研究[D]. 唐山: 华北理工大学, 2015 SONG Huikun. The role and mechanism of hypoxia-inducible factor-1α in cerebral ischemia[D]. Tangshan: North China University of Science and Technology, 2015. (in Chinese)
|
|
|
[12] |
SHIH, CHANGY. Regulations and posttranslational modifications of hypoxia inducible factor-1[J]Acta Biophysica Sinca, 2012, 28( 5): 373-382.
doi: 10.3724/SP.J.1260.2012.20032
|
|
|
[13] |
张文芳, 王 东, 崔景晶. 最佳线栓头端直径建立对小鼠脑缺血再灌注模型成功率的影响[J]. 中国康复医学杂志, 2019, 34(4): 386-391 ZHANG Wenfang, WANG Dong, Cui Jingjing. The best tip diameter of the suture established the middle cerebral artery occlusion mouse model[J]. Chinese Journal of Rehabilitation Medicine, 2019, 34(4): 386-391. (in Chinese)
|
|
|
[14] |
李振宗, 赵育梅, 袁 辉. 大鼠线栓法局灶性脑缺血模型的改良[J]. 中国微侵袭神经外科杂志, 2018, 23(9): 419-422 LI Zhenzhong, ZHAO Yumei, YUAN Hui. Improvement of the cerebral ischemia model by intraluminal filament in rats[J]. Chinese Journal of Minimally Invasive Neurosurgery, 2018, 23(9): 419-422. (in Chinese)
|
|
|
[15] |
LONGAE Z, WEINSTEINP R, CARLSONS, et al.Reversible middle cerebral artery occlusion without craniectomy in rats[J]Stroke, 1989, 20( 1): 84-91.
doi: 10.1161/01.STR.20.1.84
|
|
|
[16] |
郑建峰. 缺血性脑卒中相关大脑中动脉梗阻模型制备的研究[D]. 福州: 福建医科大学, 2016 ZHEN Jianfeng. Study on the preparation of a model of middle cerebral artery obstruction associated with ischemic stroke[D]. Fuzhou: Fujian Medical University, 2016. (in Chinese)
|
|
|
[17] |
方永奇, 莫镇涛. 脑能量代谢调节机制研究新进展[J]. 广州中医药大学学报, 2011, 28(3): 328-331 FANG Yongqi, MO Zhentao. Research progress on the regulation mechanism of brain energy metabolism[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2011, 28(3): 328-331. (in Chinese)
|
|
|
[18] |
HARDIED G, ROSSF A, HAWLEYS A. AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]Nat Rev Mol Cell Biol, 2012, 13( 4): 251-262.
doi: 10.1038/nrm3311
|
|
|
[19] |
杜 静, 杨 超, 晏耀明, 等. SIK2抑制3T3-L1脂肪细胞脂肪合成的效应及机制[J]. 中国实验诊断学, 2012, 16(8): 1354-1357 DU Jing, YANG Chao, YAN Yaoming, et al. The inhibition effect and mechanism of SIK2 on lipogenesis in 3T3-L1 adipocyte[J]. Chinese Journal of Laboratory Diagnosis, 2012, 16(8): 1354-1357. (in Chinese)
|
|
|
[20] |
王建校, 李珊珊, 赵珊珊, 等. 盐诱导激酶2的研究进展[J]. 生物物理学报, 2014, 30(2): 93-100 WANG Jianxiao, LI Shanshan, ZHAO Shanshan, et al. Research progress of salt-induced kinase 2[J]. Acta Biophysica Sinica, 2014, 30(2): 93-100. (in Chinese)
|
|
|
[21] |
ZHANGZ, YAOL, YANGJ, et al.PI3K/Akt and HIF?1 signaling pathway in hypoxia?ischemia (Review)[J]Mol Med Rep, 2018, 18( 4): 3547-3554.
doi: 10.3892/mmr.2018.9375
|
|
|
[22] |
张爱民, 蒋宗滨. 高压氧预处理通过HIF-1α/VEGF通路减轻大脑缺血再灌注损伤[J]. 中国病理生理杂志, 2018, 34(11): 2048-2053 ZHANG Aiming, JIANG Zongbing. Role of HIF-1α/VEGF pathway in treatment of cerebral ischemia-reper fusion injury by hyperbaric oxygen pretreatment[J]. Chinese Journal of Pathophysiology, 2018, 34(11): 2048-2053. (in Chinese)
|
|
|
[23] |
张永春, 谷 江, 董安涛, 等. 三白脂素-8抑制缺氧诱导因子-1α对肾癌细胞能量代谢的影响[J]. 贵州医药, 2018, 42(8): 926-929 ZHANG Yongchun, GU Jiang, DONG Antao, et al. Effect of Man A on energy metabolism of renal carcinoma cells when HIF-1α inhibited[J]. Guizhou Medical Journal, 2018, 42(8): 926-929. (in Chinese)
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|