Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (1): 106-112    DOI: 10.3724/zdxbyxb-2021-0044
Protective effect of transient receptor potential melastatin 2 inhibitor A10 on oxygen glucose deprivation/reperfusion model
HUANG Zhuoqun1(),YU Xiafei2,LIU Xingyu2,MA Kang3,HUANG Minghua2,LI Fangfang2,YANG Wei2,*(),NIU Jianguo1,3
1. Laboratory of Brain,Ningxia Medical University,Yinchuan 750004,China;
2. Department of Biophysics,Zhejiang University School of Medicine,Hangzhou 310058,China;
3. Department of Human Anatomy,Histology and Embryology,School of Basic Medicine,Ningxia Medical University,Yinchuan 750004,China
Download: HTML( 8 )   PDF(3159KB)
Export: BibTeX | EndNote (RIS)      


Objective:To investigate the effect of transient receptor potential melastatin 2 (TRPM2) inhibitor A10 on oxygen glucose deprivation/reperfusion (OGD/R) injury in SH-SY5Y cells. Methods:Human neuroblastoma SH-SY5Y cells were subject to OGD/R injury,and then were divided into blank control group,model control group and A10 group randomly. The cell survival rate was detected by cell counting kit 8 (CCK-8); the level of cellular reactive oxygen species (ROS) was detected by reactive oxygen detection kit; the mitochondrial membrane potential was detected by tetramethylrhodamine (TMRM) method; the number of apoptotic cells was detected by TUNEL apoptosis assay kit; the protein expression level of cleaved caspase 3 was detected by Western blot. Results:Compared with 3,20,30,50, 100?μmol/L, 10?μmol/L?A10 has lower cytotoxicity and better inhibition effect on channel activity. Compared with the model control group,ROS level was reduced,the mitochondrial membrane potential was improved,the number of apoptosis cells was reduced ,and the expression of cleaved caspase 3 was significantly reduced in the A10 group(all P<0.05). Conclusion: A10 can alleviate cell damage after OGD/R by inhibiting TRPM2 channel function,reducing extracellular calcium influx,reducing cell ROS levels,stabilizing mitochondrial membrane potential levels,and reducing apoptosis.

Key wordsTransient receptor potential melastatin 2 channel      Oxygen glucose deprivation/reperfusion      Reactive oxygen species      Mitochondrial membrane potential      Apoptosis      Cleaved caspase 3      SH-SY5Y cells     
Received: 28 November 2020      Published: 14 May 2021
CLC:  R743.31  
Corresponding Authors: YANG Wei     E-mail:;
Cite this article:

HUANG Zhuoqun,YU Xiafei,LIU Xingyu,MA Kang,HUANG Minghua,LI Fangfang,YANG Wei,NIU Jianguo. Protective effect of transient receptor potential melastatin 2 inhibitor A10 on oxygen glucose deprivation/reperfusion model. J Zhejiang Univ (Med Sci), 2021, 50(1): 106-112.

URL:     OR

瞬时受体电位 M2抑制剂 A10对缺糖缺氧后复糖复氧细胞的保护作用

目的:探讨瞬时受体电位M2(TRPM2)抑制剂A10对缺糖缺氧后复糖复氧(OGD/R)细胞模型的保护作用。 方法:采用SH-SY5Y细胞系制备OGD/R损伤模型。将细胞随机分为空白对照组、模型对照组和A10组。细胞计数试剂盒8检测细胞存活率;活性氧检测试剂盒检测细胞活性氧水平;四甲基罗丹明甲酯法检测线粒体膜电位;一步法TUNEL细胞凋亡检测试剂盒检测凋亡细胞数量;蛋白质印迹法测定cleaved caspase 3 蛋白表达。 结果:相对于3、20、30、50和 100?μmol/L, 10?μmol/L浓度的A10具有较低的细胞毒性及较好的通道活性抑制作用。与模型对照组比较,A10组活性氧水平降低( P<0.05),线粒体膜电位降低程度改善( P<0.05),凋亡细胞数减少( P<0.05),凋亡相关蛋白cleaved caspase 3表达减少( P<0.05)。 结论:A10可以通过抑制TRPM2通道功能、减少细胞外钙离子内流、降低细胞活性氧水平、稳定线粒体膜电位水平和减少细胞凋亡缓解OGD/R后细胞的损伤。

关键词: 瞬时受体电位M2通道,  缺糖缺氧/复糖复氧,  活性氧,  线粒体膜电位,  细胞凋亡,  Cleaved caspase 3,  SH-SY5Y细胞 
Figure 1 Toxic effect of TRPM2 inhibitor A10 at different concentrations on SH-SY5Y cells







cleaved caspase 3蛋白相对表达量










60.1±6.2 *

187.6±4.9 *

45.0±15.0 *

452.0±130.7 *

125.6±12.0 *



74.5±8.2 *#

125.1±11.5 *#

70.0±7.3 *#

166.2±51.9 #

93.4±12.8 #













Table 1 Effects of TRPM2 inhibitor A10 on the survival rate,reactive oxygen species level,mitochondrial membrane potential,cell apoptosis number,and cleaved caspase 3 protein level of cells after OGD/R treatment
Figure 2 Effect of A10 on reactive oxygen species levels of cells after OGD/R treatment
Figure 3 Effect of A10 on the mitochondrial membrane potential of cells after OGD/R treatment
Figure 4 Effect of A10 on the apoptosis of cells after OGD/R treatment
Figure 5 Effects of A10 on the expression of cleaved caspase 3 in cells after OGD/R treatment
[1]   YU C Z, LI C, PEI D S, et al. Neuroprotection against transient focal cerebral ischemia and oxygen–glucose deprivation by interference with GluR6-PSD 95 protein interaction[J] . Neurochem Res, 2009, 34(11): 2008-2021.
doi: 10.1007/s11064-009-9990-z
[2]   BAK S W, CHOI H, PARK H H, et al. Neuroprotective effects of acetyl-L-carnitine against oxygen-glucose deprivation-induced neural stem cell death[J]. Mol Neurobiol, 2016, 53(10): 6644-6652.
doi: 10.1007/s12035-015-9563-x
[3]   ZHAN K, YU P, LIU C, et al. Detrimental or beneficial:the role of TRPM2 in ischemia/reperfusion injury[J]. Acta Pharmacol Sin, 2016, 37(1): 4-12.
doi: 10.1038/aps.2015.141
[4]   BEHROUZIFAR S, VAKILI A, BANDEGI A R, et al. Neuroprotective nature of adipokine resistin in the early stages of focal cerebral ischemia in a stroke mouse model[J]. Neurochem Int, 2018, 99-107.
doi: 10.1016/j.neuint.2018.02.001
[5]   FONFRIA E, MURDOCK P R, CUSDIN F S, et al. Tissue distribution profiles of the human TRPM cation channel family[J]. J Recept Signal Transduct Res, 2006, 26(3): 159-178.
[6]   BELROSE J C, JACKSON M F . TRPM2:a candidate therapeutic target for treating neurological diseases[J]. Acta Pharmacol Sin, 2018, 39(5): 722-732.
doi: 10.1038/aps.2018.31
[7]   KANEKO S, KAWAKAMI S, HARA Y, et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide[J]. J Pharmacol Sci, 2006, 101(1): 66-76.
doi: 10.1254/jphs.fp0060128
[8]   JIA J, VERMA S, NAKAYAMA S, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke[J]. J Cereb Blood Flow Metab, 2011, 31(11): 2160-2168.
doi: 10.1038/jcbfm.2011.77
[9]   HUANG S, TURLOVA E, LI F, et al. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice[J]. Exp Neurology, 2017, 32-40.
doi: 10.1016/j.expneurol.2017.06.023
[10]   ZHANG H, LIU H, LUO X, et al. Design,synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors[J]. Eur J Medicinal Chem, 2018, 235-252.
doi: 10.1016/j.ejmech.2018.04.045
[11]   CLAPHAM D E . TRP channels as cellular sensors[J]. Nature, 2003, 426(6966): 517-524.
doi: 10.1038/nature02196
[12]   NAGAMINE K, KUDOH J, MINOSHIMA S, et al. Molecular cloning of a novel putative Ca 2+ channel protein (TRPC7) highly expressed in brain[J] . Genomics, 1998, 54(1): 124-131.
doi: 10.1006/geno.1998.5551
[13]   MCHUGH D, FLEMMING R, XU S Z, et al. Critical intracellular Ca 2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation[J] . J Biol Chem, 2003, 278(13): 11002-11006.
doi: 10.1074/jbc.M210810200
[14]   YAMAMOTO S, SHIMIZU S, KIYONAKA S, et al. TRPM2-mediated Ca 2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration[J] . Nat Med, 2008, 14(7): 738-747.
doi: 10.1038/nm1758
[15]   GAO G, WANG W, TADAGAVADI R K, et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1[J]. J Clin Invest, 2014, 124(11): 4989-5001.
doi: 10.1172/JCI76042
[16]   HERSON P S, LEE K, PINNOCK R D, et al. Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line[J]. J Biol Chem, 1999, 274(2): 833-841.
doi: 10.1074/jbc.274.2.833
[17]   SONG K, WANG H, KAMM G B, et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia[J]. Science, 2016, 353(6306): 1393-1398.
doi: 10.1126/science.aaf7537
[18]   HERMOSURA M C, CUI A M, GO R C V, et al. Altered functional properties of a TRPM2 variant in Guamanian ALS and PD[J] . Proc Natl Acad Sci USA, 2008, 105(46): 18029-18034.
doi: 10.1073/pnas.0808218105
[19]   FONFRIA E, MARSHALL I C B, BOYFIELD I, et al. Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures[J]. J Neurochem, 2005, 95(3): 715-723.
doi: 10.1111/j.1471-4159.2005.03396.x
[20]   VERMA S, QUILLINAN N, YANG Y F, et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death[J] . NeuroSci Lett, 2012, 530(1): 41-46.
doi: 10.1016/j.neulet.2012.09.044
[21]   YE M, YANG W, AINSCOUGH J F, et al. TRPM2 channel deficiency prevents delayed cytosolic Zn 2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia[J/OL] . Cell Death Dis, 2014, 5(11): e1541.
doi: 10.1038/cddis.2014.494
[22]   RUIZ A, MATUTE C, ALBERDI E . Endoplasmic reticulum Ca 2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity[J] . Cell Calcium, 2009, 46(4): 273-281.
doi: 10.1016/j.ceca.2009.08.005
[23]   SHADEL G S, HORVATH T L . Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163(3): 560-569.
doi: 10.1016/j.cell.2015.10.001
[24]   SZABADKAI G, DUCHEN M R . Mitochondria:the hub of cellular Ca 2+ signaling[J] . Physiology, 2008, 23(2): 84-94.
doi: 10.1152/physiol.00046.2007
[25]   GREEN D R, GALLUZZI L, KROEMER G . Metabolic control of cell death[J]. Science, 2014, 345(6203): 1250256.
doi: 10.1126/science.1250256
[1] YE Jiayi,GONG Hengpei,WANG Lingfeng,HUANG Zhen,QIU Fengmei,ZHONG Xiaoming. Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 705-713.
[2] LI Mengyao,LIU Pan,KE Yuehai,ZHANG Xue. Research progress on macrophage in radiation induced lung injury[J]. J Zhejiang Univ (Med Sci), 2020, 49(5): 623-628.
[3] FANG Juan,PAN Zhicheng,GUO Xiaogang. Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis[J]. J Zhejiang Univ (Med Sci), 2020, 49(1): 113-117.
[4] ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.
[5] MA Jing, HE Wenlong, GAO Chongyang, YU Ruiyun, XUE Peng, NIU Yongchao. Glucosides of chaenomeles speciosa attenuate ischemia/reperfusion-induced brain injury by regulating NF-κB P65/TNF-α in mouse model[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 289-295.
[6] YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.
[7] LIANG Gang, NIU Yumiao, LI Yihan, Wei Anyi, DONG Jingyin, ZENG Linghui. Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 443-449.
[8] LIN Kana,LIN Meili,GU Yingfen,ZHANG Shunguo,HUANG Shiying. G protein-coupled receptor 17 is involved in CoCl2-induced hypoxic injury in RGC-5 cells[J]. J Zhejiang Univ (Med Sci), 2018, 47(5): 487-492.
[9] HE Jiayi,ZHANG Xinmei. Research progress on oxidative stress in pathogenesis of endometriosis[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 419-425.
[10] LIN Meina,XU Ruiyuan,ZHANG Tao,ZHANG Lin,MEI Xuqiao. Expression of c-FLIP in peripheral blood mononuclear cells of patients with rheumatoid arthritis and its relation with extrinsic apoptotic pathway[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 381-388.
[11] DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation[J]. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.
[12] TIAN Hua, CHEN Yang, ZHAO Jiangang, LIU Daren, LIANG Gang, GONG Weihua, CHEN Li, WU Yulian. Effects of siRNAs targeting CD97 immune epitopes on biological behavior in breast cancer cell line MDA-MB231[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 341-348.
[13] ZHANG Binbin, WU Meiling, LIU Luna, ZHU Yangbin, KAI Jiejing, ZENG Linghui. Inhibiting mammalian target of rapamycin signaling pathway improves cognitive function in mice with chronic cerebral ischemia[J]. J Zhejiang Univ (Med Sci), 2017, 46(4): 405-412.
[14] CAO Peng, LENG Dongjin, LI Ying, ZHANG Ziwei, LIU Lei, LI Xiaoyan. Progress on anti-tumor molecular mechanisms of dihydroartemisinin[J]. J Zhejiang Univ (Med Sci), 2016, 45(5): 501-507.
[15] LIN Weiren, CHEN Yatian, ZENG Linghui, YING Rongbiao, ZHU Feng. Effect of a novel EZH2 inhibitor GSK126 on prostate cancer cells[J]. J Zhejiang Univ (Med Sci), 2016, 45(4): 356-363.