|
|
Effect of glutamine metabolism on chemoresistance and its mechanism in tumors |
HU Xinyang( ),JIN Hongchuan,ZHU Liyuan( ) |
Zhejiang Provincial Key Laboratory of Biotherapy,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,Hangzhou 310016,China |
|
|
Abstract The metabolic reprogramming of tumor cells is characterized by increased uptake of various nutrients including glutamine. Glutamine metabolism provides the required substances for glycolysis and oxidative phosphorylation and affects the homeostasis of carbohydrate,fat and protein metabolism to induce the chemoresistance of tumor cells. Combination of chemotherapeutic agents with inhibitors specific to different components of glutamine metabolic pathway has obtained favorable clinical results on various tumors. Glutamine metabolic pathway plays a role in drug resistance of tumor cells in various ways. Firstly,the dynamic change of glutamine transporters can directly affect intracellular glutamine content thereby causing drug resistance; secondly,tumor stromal cells including adipocyte,fibroblast and metabolite from tumor microenvironment would give rise to immune-mediated drug resistance; thirdly,the expression and activity of key enzymes in glutamine metabolism also has a critical role in drug resistance of tumors. This article reviews the effects of glutamine metabolic pathway in the development of tumor chemoresistance,in terms of transporters,tumor microenvironment and metabolic enzymes,to provide insight for improving the therapeutic efficacy for drug-resistant tumors.
|
Received: 25 November 2020
Published: 15 May 2021
|
|
Corresponding Authors:
ZHU Liyuan
E-mail: 21918520@zju.edu.cn;zly_smile@126.com
|
谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制
肿瘤细胞代谢重编程表现为对谷氨酰胺等营养物质摄取增加,而谷氨酰胺代谢可为在肿瘤细胞中过度激活的糖酵解和氧化磷酸化反应提供所需的原料,还可通过影响糖、脂质、蛋白质代谢的稳态平衡直接诱发肿瘤细胞对化疗药物的抵抗。针对谷氨酰胺代谢途径不同环节的抑制剂联合常规化疗药物在多种耐药肿瘤中取得了较好的临床治疗效果。谷氨酰胺代谢途径主要通过以下几种方式在肿瘤细胞耐药中发挥作用:谷氨酰胺转运体活性动态变化直接影响细胞内谷氨酰胺含量而影响细胞耐药性;肿瘤微环境中脂肪细胞、成纤维细胞及微环境代谢物通过免疫应答等方式介导耐药发生;谷氨酰胺代谢途径关键酶的表达及活性改变对肿瘤细胞耐药性的产生也至关重要。本文从转运体、肿瘤微环境及代谢酶等层面总结了谷氨酰胺代谢途径在肿瘤细胞产生化疗药物抵抗过程中的调控功能及其作用方式,以期为今后提高耐药性肿瘤的临床治疗效果提供新的思路。
关键词:
谷氨酰胺,
细胞代谢,
肿瘤,
耐药性,
综述
|
|
[1] |
SONG H, LIU D, DONG S, et al. Epitranscriptomics and epiproteomics in cancer drug resistance:therapeutic implications[J]. Sig Transduct Target Ther, 2020, 5(1): 193.
doi: 10.1038/s41392-020-00300-w
|
|
|
[2] |
VASAN N, BASELGA J, HYMAN D M . A view on drug resistance in cancer[J]. Nature, 2019, 575(7782): 299-309.
doi: 10.1038/s41586-019-1730-1
|
|
|
[3] |
FENDT S M, FREZZA C, EREZ A . Targeting metabolic plasticity and flexibility dynamics for cancer therapy[J]. Cancer Discov, 2020, 10(12): 1797-1807.
doi: 10.1158/2159-8290.CD-20-0844
|
|
|
[4] |
ZHAO Y, BUTLER E B, TAN M . Targeting cellular metabolism to improve cancer therapeutics[J/OL]. Cell Death Dis, 2013, 4(3): e532.
doi: 10.1038/cddis.2013.60
|
|
|
[5] |
KOPPENOL W H, BOUNDS P L, DANG C V . Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337.
doi: 10.1038/nrc3038
|
|
|
[6] |
LIBERTI M V, LOCASALE J W . The Warburg effect:How does it benefit cancer cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218.
doi: 10.1016/j.tibs.2015.12.001
|
|
|
[7] |
VANDER HEIDEN M G . Targeting cancer metabolism:a therapeutic window opens[J]. Nat Rev Drug Discov, 2011, 10(9): 671-684.
doi: 10.1038/nrd3504
|
|
|
[8] |
SON J, LYSSIOTIS C A, YING H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway[J]. Nature, 2013, 496(7443): 101-105.
doi: 10.1038/nature12040
|
|
|
[9] |
EREZ A, KOLODKIN-GAL I . From prokaryotes to cancer:Glutamine flux in multicellular units[J]. Trends Endocrinol Metab, 2017, 28(9): 637-644.
doi: 10.1016/j.tem.2017.05.007
|
|
|
[10] |
SEMENZA G L . HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J]. J Clin Invest, 2013, 123(9): 3664-3671.
doi: 10.1172/JCI67230
|
|
|
[11] |
SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport. From energy supply to sensing and beyond[J]. BioChim Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(8): 1147-1157.
doi: 10.1016/j.bbabio.2016.03.006
|
|
|
[12] |
WISE D R, WARD P S, SHAY J E S, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19611-19616.
doi: 10.1073/pnas.1117773108
|
|
|
[13] |
METALLO C M, GAMEIRO P A, BELL E L, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia[J]. Nature, 2012, 481(7381): 380-384.
doi: 10.1038/nature10602
|
|
|
[14] |
LACEY J M, WILMORE D W . Is glutamine a conditionally essential amino acid?[J]. Nutrition Rev, 2009, 48(8): 297-309.
doi: 10.1111/j.1753-4887.1990.tb02967.x
|
|
|
[15] |
RUBIN A L. Suppression of transformation by and growth adaptation to low concentrations of glutamine in NIH-3T3 cells[J]. Cancer Res,1990,50(9):2832–2839 .
|
|
|
[16] |
SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J]. Front Oncol, 2017, 306.
doi: 10.3389/fonc.2017.00306
|
|
|
[17] |
FERREIRA L M R, HEBRANT A, DUMONT J E . Metabolic reprogramming of the tumor[J]. Oncogene, 2012, 31(36): 3999-4011.
doi: 10.1038/onc.2011.576
|
|
|
[18] |
HUANG Q, TAN Y, YIN P, et al. Metabolic characte- rization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16): 4992-5002.
doi: 10.1158/0008-5472.CAN-13-0308
|
|
|
[19] |
VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B . Understanding the warburg effect:The metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
doi: 10.1126/science.1160809
|
|
|
[20] |
PASTORE A, PIEMONTE F . S-glutathionylation signaling in cell biology:Progress and prospects[J]. Eur J Pharmaceutical Sci, 2012, 46(5): 279-292.
doi: 10.1016/j.ejps.2012.03.010
|
|
|
[21] |
MOHAMED A, DENG X, KHURI F R, et al. Altered glutamine metabolism and therapeutic opportunities for lung cancer[J]. Clin Lung Cancer, 2014, 15(1): 7-15.
doi: 10.1016/j.cllc.2013.09.001
|
|
|
[22] |
SOUBA W W, STREBEL F R, BULL J M, et al. Interorgan glutamine metabolism in the tumor-bearing rat[J]. J Surgical Res, 1988, 44(6): 720-726.
doi: 10.1016/0022-4804(88)90106-0
|
|
|
[23] |
DUDRICK P S, INOUE Y, ESPAT N J, et al. Na +- dependent glutamine transport in the liver of tumour-bearing rats[J] . Surg Oncol, 1993, 2(3): 205-215.
doi: 10.1016/0960-7404(93)90008-m
|
|
|
[24] |
CHEN M K, ESPAT N J, BLAND K I, et al. Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney[J]. Ann Surgery, 1993, 217(6): 655-667.
doi: 10.1097/00000658-199306000-00007
|
|
|
[25] |
HENSLEY C T, WASTI A T, DEBERARDINIS R J . Glutamine and cancer:cell biology,physiology,and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684.
doi: 10.1172/JCI69600
|
|
|
[26] |
DURáN R V, OPPLIGER W, ROBITAILLE A M, et al. Glutaminolysis activates Rag-mTORC1 signaling[J]. Mol Cell, 2012, 47(3): 349-358.
doi: 10.1016/j.molcel.2012.05.043
|
|
|
[27] |
GANAPATHY V, THANGARAJU M, PRASAD P D . Nutrient transporters in cancer:relevance to Warburg hypothesis and beyond[J]. Pharmacol Ther, 2009, 121(1): 29-40.
doi: 10.1016/j.pharmthera.2008.09.005
|
|
|
[28] |
YOO H C, PARK S J, NAM M, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells[J]. Cell Metab, 2020, 31(2): 267-283.e12.
doi: 10.1016/j.cmet.2019.11.020
|
|
|
[29] |
FENG M, XIONG G, CAO Z, et al. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 274.
doi: 10.1186/s13046-018-0947-4
|
|
|
[30] |
KIM J H, LEE K J, SEO Y, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism[J]. Sci Rep, 2018, 8(1): 409.
doi: 10.1038/s41598-017-18762-4
|
|
|
[31] |
BLüHER M . Obesity:global epidemiology and patho- genesis[J]. Nat Rev Endocrinol, 2019, 15(5): 288-298.
doi: 10.1038/s41574-019-0176-8
|
|
|
[32] |
BOCHET L, LEHUéDé C, DAUVILLIER S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer[J]. Cancer Res, 2013, 73(18): 5657-5668.
doi: 10.1158/0008-5472.CAN-13-0530
|
|
|
[33] |
CALLE E E, KAAKS R . Overweight,obesity and cancer:epidemiological evidence and proposed mechanisms[J]. Nat Rev Cancer, 2004, 4(8): 579-591.
doi: 10.1038/nrc1408
|
|
|
[34] |
EHSANIPOUR E A, SHENG X, BEHAN J W, et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine[J]. Cancer Res, 2013, 73(10): 2998-3006.
doi: 10.1158/0008-5472.CAN-12-4402
|
|
|
[35] |
PETROVA V, ANNICCHIARICO-PETRUZZELLI M, MELINO G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1): 10.
doi: 10.1038/s41389-017-0011-9
|
|
|
[36] |
MARTINEZ-OUTSCHOORN U E, LISANTI M P, SOTGIA F . Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells,fueling tumor growth[J]. Seminars Cancer Biol, 2014, 47-60.
doi: 10.1016/j.semcancer.2014.01.005
|
|
|
[37] |
KO Y H, LIN Z, FLOMENBERG N, et al. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells[J]. Cancer Biol Ther, 2011, 12(12): 1085-1097.
doi: 10.4161/cbt.12.12.18671
|
|
|
[38] |
MUIR A, DANAI L V, GUI D Y, et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition[J/OL]. eLife, 2017, e27713.
doi: 10.7554/eLife.27713
|
|
|
[39] |
BAENKE F, CHANETON B, SMITH M, et al. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells[J]. Mol Oncol, 2016, 10(1): 73-84.
doi: 10.1016/j.molonc.2015.08.003
|
|
|
[40] |
TANAKA K, SASAYAMA T, IRINO Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment[J]. J Clin Invest, 2015, 125(4): 1591-1602.
doi: 10.1172/JCI78239
|
|
|
[41] |
LONG Y, TSAI W B, WANGPAICHITR M, et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming,glucose dependence,and glutamine addiction[J]. Mol Cancer Ther, 2013, 12(11): 2581-2590.
doi: 10.1158/1535-7163.MCT-13-0302
|
|
|
[42] |
JIANG Z F, WANG M, XU J L, et al. Hypoxia promotes mitochondrial glutamine metabolism through HIF1α-GDH pathway in human lung cancer cells[J]. Biochem BioPhys Res Commun, 2017, 483(1): 32-38.
doi: 10.1016/j.bbrc.2017.01.015
|
|
|
[43] |
KIM M J, CHOI Y K, PARK S Y, et al. PPARδ reprograms glutamine metabolism in sorafenib-resistant HCC[J]. Mol Cancer Res, 2017, 15(9): 1230-1242.
doi: 10.1158/1541-7786.MCR-17-0061
|
|
|
[44] |
LIAO J, LIU P P, HOU G, et al. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling[J]. Mol Cancer, 2017, 16(1): 51.
doi: 10.1186/s12943-017-0623-x
|
|
|
[45] |
JIN H, WANG S, ZAAL E A, et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer[J/OL]. eLife, 2020, e56749.
doi: 10.7554/eLife.56749
|
|
|
[46] |
SHAJAHAN-HAQ A N, COOK K L, SCHWARTZ-ROBERTS J L, et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer[J]. Mol Cancer, 2014, 13(1): 239.
doi: 10.1186/1476-4598-13-239
|
|
|
[47] |
CHEN R, LAI L A, SULLIVAN Y, et al. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer[J]. Sci Rep, 2017, 7(1): 7950.
doi: 10.1038/s41598-017-08436-6
|
|
|
[48] |
WONG C C, XU J, BIAN X, et al. In colorectal cancer cells with mutant KRAS,SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT Signaling,stemness,and drug resistance[J]. Gastroenterology, 2020, 159(6): 2163-2180.e6.
doi: 10.1053/j.gastro.2020.08.016
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|