Please wait a minute...
J Zhejiang Univ (Med Sci)  2021, Vol. 50 Issue (1): 81-89    DOI: 10.3724/zdxbyxb-2021-0013
    
Establishment of risk prediction nomogram for ipsilateral axillary lymph node metastasis in T1 breast cancer
FU Yuanyuan1,2(),JIANG Jingxin1,CHEN Shuzheng2,QIU Fuming1,*()
1. Department of Medical Oncology,the Second Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310009,China;
2. Department of Breast Surgery,Zhejiang University Lishui Hospital,Lishui 323000,Zhejiang Province,China
Download: HTML( 22 )   PDF(3147KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To establish and verify a risk prediction nomogram for ipsilateral axillary lymph node metastasis in breast cancer stage T1 (mass ≤ 2 cm). Methods:The clinicopathological data of 907 patients with T1 breast cancer who underwent surgical treatment from January 2010 to June 2015 were collected,including 573 cases from the Second Affiliated Hospital of Zhejiang University School of Medicine (modeling group) and 334 cases from Zhejiang University Lishui Hospital (verification group). The risk factors of ipsilateral axillary lymph node metastasis were analyzed by univariate and multivariate logistic regression. The influencing factors were used to establish a nomogram for predicting ipsilateral axillary lymph nodes metastasis in T1 breast cancer. The model calibration,predictive ability and clinical benefit in the modeling group and the verification group were analyzed by C index,receiver operating characteristic curve,calibration curve and decision curve analysis (DCA) curve,respectively. Results:Univariate analysis showed that lymph node metastasis was related with primary tumor size,vascular tumor thrombus,Ki-67,histopathological grade,and molecular type ( P<0.05 or P<0.01). Multivariate logistic regression analysis showed that the primary tumor > 0.5?cm, vascular tumor thrombus,Ki-67 positive,estrogen receptor (ER) positive,and histopathological grade 2-3 were independent risk factors of axillary lymph node metastasis ( P<0.05 or P<0.01). Based on the independent risk factors,a nomogram prediction model was established. The C indexes of the model group and the validation group were 0.739 (95% CI:0.693-0.785) and 0.736 (95% CI:0.678-0.793),respectively. The calibration curve and DCA curve of the modeling group and the verification group indicated that the model was consistent and had good clinical benefit. Conclusions:Primary tumor size,histopathological grade,vascular tumor thrombus,Ki-67,and ER status are predictors of ipsilateral axillary lymph node metastasis in T1 breast cancer. The established prediction nomogram can effectively predict the risk of ipsilateral axillary lymph node metastasis in T1 breast cancer,which can be used as a reference for individualized axillary management.



Key wordsBreast neoplasm      Lymphatic metastasis      Risk factors      Nomogram      Prediction     
Received: 30 November 2020      Published: 16 May 2021
CLC:  R730.4  
  R730.4  
  A  
Corresponding Authors: QIU Fuming     E-mail: zjdrfu@163.com;zdf2zlk@163.com
Cite this article:

FU Yuanyuan,JIANG Jingxin,CHEN Shuzheng,QIU Fuming. Establishment of risk prediction nomogram for ipsilateral axillary lymph node metastasis in T1 breast cancer. J Zhejiang Univ (Med Sci), 2021, 50(1): 81-89.

URL:

http://www.zjujournals.com/med/10.3724/zdxbyxb-2021-0013     OR     http://www.zjujournals.com/med/Y2021/V50/I1/81


T1期乳腺癌患者发生同侧腋窝淋巴结转移风险列线图的建立

目的:建立T1期(原发肿瘤最大直径 2?cm及以下)乳腺癌患者发生同侧腋窝淋巴结转移风险的列线图。 方法:收集2010年1月至2015年6月在浙江大学医学院附属第二医院及浙江大学丽水医院接受手术治疗的T1期乳腺癌患者的临床病理资料。共入组907例患者,其中浙江大学医学院附属第二医院患者作为建模组( n=573),浙江大学丽水医院患者作为验证组( n=334)。运用单因素Logistic回归分析风险因素,多因素Logistic回归进一步筛选独立影响因素,利用影响因素建立预测T1期乳腺癌患者同侧腋窝淋巴结转移风险的列线图。运用C指数、受试者操作特征曲线、校准曲线以及临床决策曲线分析模型的校准度、预测能力和临床效益。 结果:单因素分析结果显示,T1期乳腺癌患者发生同侧腋窝淋巴结转移与原发肿瘤大小、脉管癌栓、Ki-67、组织病理学分级和分子分型相关( P<0.05或 P<0.01)。多因素Logistic回归分析显示,T1期乳腺癌患者发生同侧腋窝淋巴结转移的独立影响因素为原发肿瘤大于0.5 cm、有脉管癌栓、Ki-67阳性、雌激素受体(ER)阳性以及组织病理学分级2~3级( P<0.05或 P<0.01)。基于上述5个独立影响因素构建列线图预测模型,建模组和验证组C指数分别为0.739(95% CI:0.693~0.785)和0.736(95% CI:0.678~0.793),模型预测能力良好。建模组和验证组校正曲线、临床决策曲线提示模型一致性和临床获益良好。 结论:原发肿瘤大小、组织病理学分级、脉管癌栓、Ki-67和ER状态是T1期乳腺癌患者发生同侧腋窝淋巴结转移的重要预测因素。建立的风险预测列线图可以有效预测患者发生同侧腋窝淋巴结转移的风险,为临床医生制订个体化的腋窝管理方案提供参考。


关键词: 乳腺肿瘤,  淋巴转移,  危险因素,  列线图,  预测 
Figure 1 Research objects screening flowchart

组别

n

年龄≥50岁 *

淋巴结转移

T分期

有脉管癌栓

有导管原位癌成分

ER阳性

PR阳性

Her-2阳性

T1a

T1b

T1c

建模组

573

319(55.7)

141(24.6)

47(8.2)

114(19.9)

412(71.9)

44(7.7)

174(30.4)

408(71.2)

357(62.3)

134(23.4)

验证组

334

175(52.5)

97(29.0)

31(9.3)

44(13.2)

259(77.5)

35(10.5)

44(13.2)

263(78.7)

236(70.7)

79(23.7)

t/ χ 2

5.509

249.161

6.666

2.081

34.161

6.229

6.508

0.008

P

<0.05

<0.01

<0.05

0.149

<0.01

<0.05

<0.05

0.927

组别

n

Ki-67阳性

组织病理学分级

分子分型

1级

2级

3级

未分级

Luminal A型

LuminalB型(Her-2阴性)

LuminalB型(Her-2阳性)

Her-2过表达型

三阴性乳腺癌

建模组

573

279(48.7)

110(19.2)

312(54.5)

124(21.6)

27(4.7)

229(40.0)

123(21.5)

68(11.9)

66(11.5)

87(15.2)

验证组

334

204(61.1)

44(13.2)

145(43.3)

122(36.5)

23(6.9)

114(34.1)

104(31.1)

47(14.1)

32(9.6)

37(11.1)

t/ χ 2

13.005

28.660

13.928

P

<0.01

<0.01

<0.01

Table 1 Baseline characteristics of the patients in the modeling group and validation group
Figure 2 Result of multivariate logistic regression analysis of clinicopathological characteristics and ipsilateral axillary lymph node metastasis in the modeling group

影响因素

OR(95% CI

P

年龄

0.843(0.576~1.234)

>0.05

原发肿瘤大小(T分期)

?

?

T1b

4.787(1.072~21.377)

<0.05

T1c

0.138(2.182~38.274)

<0.01

导管原位癌成分

0.803(0.526~1.227)

>0.05

脉管癌栓

6.442(3.368~12.322)

<0.01

ER阳性

1.242(0.807~1.911)

>0.05

PR阳性

0.929(0.629~1.373)

>0.05

Her-2阳性

1.356(0.879~2.093)

>0.05

Ki-67阳性

2.269(1.532~3.360)

<0.01

分子分型

?

?

LuminalB型(Her-2阴性)

2.325(1.414~3.823)

<0.01

LuminalB型(Her-2阳性)

1.802(0.971~3.344)

>0.05

Her-2过表达型

1.749(0.934~3.275)

>0.05

三阴性乳腺癌

0.975(0.516~1.841)

>0.05

组织病理学分级

?

?

2级

3.391(1.687~6.816)

<0.01

3级

6.316(3.002~13.287)

<0.01

未分级

1.739(0.501~6.040)

>0.05

Table 2 Results of univariate logistic regression analysis of clinicopathological characteristics and ipsilateral axillary lymph node metastasis in the modeling group
Figure 3 A nomogram of the risk of ipsilateral axillary lymph node metastasis in patients with T1 breast cancer
Figure 4 ROC analysis of the prediction model of the risk of ipsilateral axillary lymph node metastasis in patients with T1 breast cancer
Figure 5 Calibration curves of nomogram of the risk of ipsilateral axillary lymph node metastasis in patients with T1 breast cancer
Figure 6 Decision curves of nomogram of the risk of ipsilateral axillary lymph node metastasis in T1 breast cancer
[1]   郑荣寿,孙可欣,张思维,等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志,2019,41(1):19–28.DOI:10.3760/cma.j.issn.0253-3766.2019.01. 005 .
[2]   VERONESI P, CORSO G . Standard and controversies in sentinel node in breast cancer patients[J]. Breast, 2019, S53-S56.
doi: 10.1016/S0960-9776(19)31124-5
[3]   GIULIANO A E, BALLMAN K V, MCCALL L, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis[J]. JAMA, 2017, 918–926.
doi: 10.1001/jama.2017.11470
[4]   BUNDRED N J, BARNES N L P, RUTGERS E, et al. Is axillary lymph node clearance required in node-positive breast cancer?[J]. Nat Rev Clin Oncol, 2015, 55-61.
doi: 10.1038/nrclinonc.2014.188
[5]   BEEK M A, VERHEUVEL N C, LUITEN E J T, et al. Two decades of axillary management in breast cancer[J]. Br J Surg, 2015, 1658-1664.
doi: 10.1002/bjs.9955
[6]   ZHENG X, YAO Z, HUANG Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 1236.
doi: 10.1038/s41467-020-15027-z
[7]   GENTILINI O, BOTTERI E, DADDA P, et al. Physical function of the upper limb after breast cancer surgery. Results from the SOUND (Sentinel node vs. Observation after axillary Ultra-souND) trial[J]. Eur J Surgical Oncology, 2016, 685-689.
doi: 10.1016/j.ejso.2016.01.020
[8]   QIU S Q, AARNINK M, VAN MAAREN M C, et al. Validation and update of a lymph node metastasis prediction model for breast cancer[J]. Eur J Surgical Oncology, 2018, 700-707.
doi: 10.1016/j.ejso.2017.12.008
[9]   GIULIANO A E, EDGE S B, HORTOBAGYI G N . Eighth edition of the AJCC cancer staging manual:breast cancer[J]. Ann Surg Oncol, 2018, 1783-1785.
doi: 10.1245/s10434-018-6486-6
[10]   GOLDHIRSCH A, WINER E P, COATES A S, et al. Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J] . Ann Oncology, 2013, 2206-2223.
doi: 10.1093/annonc/mdt303
[11]   COATES A S, WINER E P, GOLDHIRSCH A, et al. Tailoring therapies— improving the management of early breast cancer:St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015[J] . Ann Oncology, 2015, 1533-1546.
doi: 10.1093/annonc/mdv221
[12]   梅放,柳剑英,薛卫成. 浸润性乳腺癌的组织学分级:Nottingham组织学分级系统[J]. 中华病理学杂志,2019,48(8):659–664.DOI:10.3760/cma.j.issn.0529-5807.2019.08.019 .
[13]   王一澎,张扬,王仲照,等. 2108例T_(1~2)期乳腺癌患者腋窝淋巴结转移的相关因素分析[J]. 癌症进展,2016,14(6):530–534.DOI:10.11877/j.issn. 1672-1535.2016.14.06.09 .
[14]   焦得闯,乔江华,朱久俊,等. T1期乳腺癌腋窝淋巴结转移及乳腺癌特异生存的影响因素分析[J]. 中华医学杂志,2018,98(40):3258–3262.DOI: 10.3760/cma.j.issn.0376-2491.2018.40.009 .
[15]   RIEDEL F, HEIL J, GOLATTA M, et al. Changes of breast and axillary surgery patterns in patients with primary breast cancer during the past decade[J]. Arch Gynecol Obstet, 2019, 1043-1053.
doi: 10.1007/s00404-018-4982-3
[16]   GERA R, KASEM A, MOKBEL K . Can complete axillary node dissection be safely omitted in patients with early breast cancer when the sentinel node biopsy is positive for malignancy? An update for clinical practice[J]. In Vivo, 2018, 1301-1307.
doi: 10.21873/invivo.11380
[17]   DONKER M, VAN TIENHOVEN G, STRAVER M E, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS):a randomised,multicentre,open-label,phase 3 non-inferiority trial[J]. Lancet Oncology, 2014, 1303-1310.
doi: 10.1016/S1470-2045(14)70460-7
[18]   LOZA C M, MANDó P, PONCE C, et al. Predictive factors for non-sentinel lymph node metastasis in patients with ACOSOG Z0011 criteria[J]. Breast Care, 2018, 434-438.
doi: 10.1159/000488277
[19]   YUN S J, SOHN Y M, SEO M . Risk stratification for axillary lymph node metastases in breast cancer patients[J]. Ultrasound Q, 2017, 15-22.
doi: 10.1097/RUQ.0000000000000249
[20]   YOSHIHARA E, SMEETS A, LAENEN A, et al. Predictors of axillary lymph node metastases in early breast cancer and their applicability in clinical practice[J]. Breast, 2013, 357-361.
doi: 10.1016/j.breast.2012.09.003
[21]   TSENG H S, CHEN L S, KUO S J, et al. Tumor characteristics of breast cancer in predicting axillary lymph node metastasis[J]. Med Sci Monit, 2014, 1155-1161.
doi: 10.12659/MSM.890491
[22]   CHUNG M J, LEE J H, KIM S H, et al. Simple prediction model of axillary lymph node positivity after analyzing molecular and clinical factors in early breast cancer[J/OL]. Medicine, 2016, e3689.
doi: 10.1097/MD.0000000000003689
[23]   SHAYAN R, INDER R, KARNEZIS T, et al. Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis[J]. Clin Exp Metastasis, 2013, 345-356.
doi: 10.1007/s10585-012-9541-x
[24]   YU H, ZHANG S, ZHANG R, et al. The role of VEGF-C/D and Flt-4 in the lymphatic metastasis of early-stage invasive cervical carcinoma[J]. J Exp Clin Cancer Res, 2009, 98.
doi: 10.1186/1756-9966-28-98
[25]   CRABB S J, CHEANG M C U, LEUNG S, et al. Basal breast cancer molecular subtype predicts for lower incidence of axillary lymph node metastases in primary breast cancer[J]. Clin Breast Cancer, 2008, 249-256.
doi: 10.3816/CBC.2008.n.028
[26]   RODRíGUEZ-PINILLA S M, SARRIó D, HONRADO E, et al. Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas[J]. Clin Cancer Res, 2006, 1533-1539.
doi: 10.1158/1078-0432.CCR-05-2281
[1] YE Yuanqing,LEI Hao,CHEN Chen,HU Kejia,XU Xiaolin,YUAN Changzheng,CAO Shuyin,WANG Sisi,WANG Sicong,LI Shu,YING Zhijun,JIA Junlin,WANG Qinchuan,Sten H. VERMUND,XU Zhengping,WU Xifeng. Predicting COVID-19 epidemiological trend by applying population mobility data in two-stage modeling[J]. J Zhejiang Univ (Med Sci), 2021, 50(1): 68-73.
[2] ZHU Huiqi,YING Kejing. Tissue factors and venous thromboembolism in cancer patients[J]. J Zhejiang Univ (Med Sci), 2020, 49(6): 772-778.
[3] LIU Jingwen,YANG Xinglian,SHEN Kaili,ZENG Linghui,SUN Yan. Chloroxoquinoline inhibits invasion in breast cancer via down-regulating Rho/Rho kinase signaling pathway[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 631-637.
[4] HU Linlin,ZHANG Ruiting,WANG Shuyue,HONG Hui,HUANG Peiyu,ZHANG Minming. Correlation of cardiovascular risk factors with brain iron deposition: A magnetic resonance imaging study[J]. J Zhejiang Univ (Med Sci), 2019, 48(6): 644-650.
[5] LIN Jing,CHEN Zhimin. Research progress on early identification of severe adenovirus pneumonia in children[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 567-572.
[6] Mehmutjan Muzepper,ZHOU Min. Risk factors of pelvic ischemic symptoms after iliac artery occlusion during endovascular aneurysm repair[J]. J Zhejiang Univ (Med Sci), 2019, 48(5): 546-551.
[7] TAO Anyang, WANG Zhimin, CHEN Hongfang, XU Dongjuan, HU Haifang, WU Chenglong, ZHANG Xiaoling, MA Xiaodong, WANG Yaxian, HU Haitao, LOU Min, Improving In-hospital Stroke Service Utilisation (MISSION) in Zhejiang Province . Association of atrial fibrillation with hemorrhagic transformation after intravenous thrombolysis in patients with ischemic stroke[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 254-259.
[8] WANG Qingmei, XU Qianzi, WEI Anyi, CHEN Shishuo, ZHANG Chong, ZENG Linghui. High dose vitamin C inhibits proliferation of breast cancer cells through reducing glycolysis and protein synthesis[J]. J Zhejiang Univ (Med Sci), 2019, 48(3): 296-302.
[9] XU A'qiao,HE Hongqin,SHI Qiujun,LI Zhiqing,ZHANG Shengjian. Digital breast tomosynthesis in diagnosis of dense breast lesions[J]. J Zhejiang Univ (Med Sci), 2019, 48(2): 186-192.
[10] CHEN Dong,HU Yuanjun,WU Yurui,LI Xiaoying. Risk factors of death in newborns with congenital diaphragmatic hernia[J]. J Zhejiang Univ (Med Sci), 2019, 48(1): 83-88.
[11] CAO Liqin,SHI Jimin. Graft failure in allogeneic hematopoietic stem cell trans-plantation[J]. J Zhejiang Univ (Med Sci), 2018, 47(6): 651-658.
[12] CHEN Qian,LIU Lu,ZHANG Jingjing,HAN Sai,CUI Baoxia,ZHANG Youzhong,KONG Beihua. Clinical features and prognosis of cervical adenocarcinoma and adenosquamous carcinoma: an analysis of 237 cases[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 357-361.
[13] CHEN Shujun,SHAO Guoliang,SHAO Feng,ZHANG Minming. Diffusion-weighted imaging texture features in differentiation of malignant from benign nonpalpable breast lesions for patients with microcalcifications-only in mammography[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 400-404.
[14] XU Zhili,CUI Yiyi,LI Yan,GUO Yong. Research progress on nonspecific immune microenvironment in breast cancer[J]. J Zhejiang Univ (Med Sci), 2018, 47(4): 426-434.
[15] LI Xiaoyong,SHEN Peng,LIN Hongbo,YU Zhebin,CHEN Kun,WANG Jianbing. A community-based survey on risk factors of type 2 diabetic kidney disease in Ningbo, China[J]. J Zhejiang Univ (Med Sci), 2018, 47(2): 163-168.