Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (5): 647-655    DOI: 10.3724/zdxbyxb-2022-0459
综述     
恶性肿瘤新靶标PHF5A的研究现状及治疗展望
李曼1,程倩倩1,王效静2,3,杨燕1,*()
1. 蚌埠医学院第一附属医院肿瘤内科,安徽 蚌埠 233004
2. 呼吸系病临床基础安徽省重点实验室,安徽 蚌埠 233004
3. 蚌埠医学院第一附属医院分子诊断中心,呼吸与危重症医学科,安徽 蚌埠 233004
Research progress and therapeutic prospect of PHF5A acting as a new target for malignant tumors
LI Man1,CHENG Qianqian1,WANG Xiaojing2,3,YANG Yan1,*()
1. Department of Medical Oncology, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China;
2. Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Bengbu 233004, Anhui Province, China;
3. Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
 全文: PDF(1192 KB)   HTML( 17 )
摘要:

植物同源域锌指蛋白5A(PHF5A)是PHD-finger样蛋白超家族成员之一,广泛表达于真核生物细胞核中,其PHD-finger样结构域是蛋白质-DNA或蛋白质-蛋白质相互作用区。PHF5A除作为剪接体蛋白组成亚单位调控靶基因的选择性剪接外,还在胚胎干细胞的多潜能性维持、染色质结构重塑、DNA损伤修复、胚胎形成与组织形态发育等方面发挥重要作用。近年来,越来越多的研究集中在探索PHF5A的剪接体相关功能和非剪接体相关功能,及其功能异常与乳腺癌、肺癌、结直肠癌等多种恶性肿瘤的发生、发展及预后的关系,并发现其潜在机制可能包括介导靶基因的异常选择性剪接、作为原癌基因/蛋白激活下游信号通路、作为核转录因子或辅因子调控异常的基因转录等。此外,PHF5A还参与某些肿瘤干细胞的生长调控。本文就PHF5A的结构及功能特点及其在多种恶性肿瘤发生发展中的作用进行综述,以期为抗肿瘤治疗提供潜在作用靶点。

关键词: 植物同源域锌指蛋白5A恶性肿瘤胚胎干细胞肿瘤干细胞选择性剪接综述    
Abstract:

PHD-finger domain protein 5A (PHF5A) is a member of the PHD-finger like protein superfamily and widely expressed in the nucleus of eukaryotes. The PHD-finger like domain is a protein-DNA or protein-protein interaction region. In addition to regulate alternative splicing of target genes as a spliceosome protein subunit, PHF5A is also involved in pluripotency maintenance of embryonic stem cells, chromatin remodeling, DNA damage repair, embryogenesis and histomorphological development. Recently, increasing studies have focused on exploring spliceosome-related and non-spliceosome-related functions of PHF5A and its relationship with the tumorigenesis, development and patient prognosis of various malignant tumors, such as breast cancer, lung cancer and colorectal cancer. The underlying mechanisms of PHF5A may include mediating aberrant alternative splicing of target genes, activating downstream signaling pathways as an oncogene/protein, and regulating abnormal gene transcription as a nuclear transcription factor or cofactor. Besides, PHF5A was also found to be involved in the growth regulation of cancer stem cells. In this review, we aimed to delineate the structural and functional characteristics of PHF5A, to summarize its role in the occurrence and development of malignant tumors hitherto described, and to provide potential targets for anti-tumor therapy.

Key words: PHD-finger domain protein 5A    Malignant tumor    Embryonic stem cell    Cancer stem cell    Alternative splicing    Review
收稿日期: 2022-08-03 出版日期: 2022-12-28
CLC:  R73  
基金资助: 国家自然科学基金(82072585); 安徽省自然科学基金(2008085MH238); 安徽省高校优秀青年人才支持计划(gxyq2022042); 蚌埠医学院研究生科研创新计划(Byycx20046)
通讯作者: 杨燕     E-mail: an
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李曼
程倩倩
王效静
杨燕

引用本文:

李曼,程倩倩,王效静,杨燕. 恶性肿瘤新靶标PHF5A的研究现状及治疗展望[J]. 浙江大学学报(医学版), 2022, 51(5): 647-655.

LI Man,CHENG Qianqian,WANG Xiaojing,YANG Yan. Research progress and therapeutic prospect of PHF5A acting as a new target for malignant tumors. J Zhejiang Univ (Med Sci), 2022, 51(5): 647-655.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0459        https://www.zjujournals.com/med/CN/Y2022/V51/I5/647

图1  剪接复合物U2-snRNP组成结构示意图 U2-snRNP主要由SF3A、SF3B1/2/3、PHF5A等构成, 在识别及去除前mRNA内含子中发挥重要作用. U2-snRNP:U2-核小核糖核蛋白;PHF5A:植物同源域锌指蛋白5A;SF:剪接因子;U2AF:U2小核核糖核蛋白辅助因子.

肿瘤类型

功 能

靶基因/蛋白

相关机制或通路

作 用

参考文献

乳腺癌

剪接因子

FASTK

作为表观遗传的细胞凋亡抑制因子调控FASTK-AS轴

增强细胞增殖、迁移能力和致瘤性, 抑制细胞凋亡

[3]

非小细胞肺癌及其肿瘤干细胞

癌基因;剪接因子

IGFBP3、DDIT3、CHD4和HDAC8、PIK3CB、SKP2d等

PHF5A-TOMM22-氧化磷酸化调控网络;CHD4-PHF5A相互作用激活RhoA/ROCK通路

增强细胞增殖、迁移、侵袭能力和致瘤性, 抑制细胞凋亡, 促进异种移植瘤生长;与肿瘤进展及患者预后不良相关

[ 4, 17, 30- 32 ]

结直肠癌

剪接因子

KDM3A、TEAD2

增强U2-snRNP亚单位间的相互作用, 影响前mRNA的整体剪接模式;高PHF5A-K29乙酰化诱导的AS上调KDM3A并激活Wnt通路, 进而调控细胞应激反应;促进TEAD2外显子2包含体剪接以激活Yes相关蛋白

在体内外促进细胞增殖、转移;促进异种移植瘤生长;与患者较差的临床分期及较低的3年存活率密切相关

[ 5, 18 ]

肝细胞癌

癌基因

NF-κB

增强NF-κB通路活性,上调MMP9及Slug

促进肝细胞癌迁移、侵袭及肿瘤进展

[25]

胃癌

癌基因

NF-κB

增强NF-κB通路活性,上调磷酸化IκBα及细胞周期蛋白D1

促进细胞增殖、迁移;与患者不良预后相关

[ 33- 34 ]

口腔鳞癌肿瘤干细胞

与患者较短的无病生存期有关

[27]

胰腺癌肿瘤干细胞

剪接因子

形成PAF1-PHF5A-DDX3亚复合体, 定位于Nanog启动子区域,增加肿瘤干细胞多能干细胞转录因子及干性标志物的表达以维持干性

促进肿瘤球、原位瘤及转移灶的形成

[24]

子宫内膜癌

剪接因子/辅

因子

Gjα1

在雌激素存在下,促进Gjα1 的表达

与子宫内膜腺癌发生可能有关

[26]

GBM干细胞

剪接因子

增强对富含C的3′端剪接位点外显子的识别

促进GBM干细胞增殖及异种移植瘤的发生发展

[35]

表 1  PHF5A在不同肿瘤中的调控作用及生物学功能
1 LEE Y T , TAN Y J , OON C E . Molecular targeted therapy: treating cancer with specificity[J]Eur J Pharmacol, 2018, 188-196.
doi: 10.1016/j.ejphar.2018.07.034
2 BEDARD P L , HYMAN D M , DAVIDS M S , et al.Small molecules, big impact: 20 years of targeted therapy in oncology[J]Lancet, 2020, 395( 10229): 1078-1088.
doi: 10.1016/S0140-6736(20)30164-1
3 ZHENG Y Z , XUE M Z , SHEN H J , et al.PHF5A epigenetically inhibits apoptosis to promote breast cancer progression[J]Cancer Res, 2018, 78( 12): 3190-3206.
doi: 10.1158/0008-5472.CAN-17-3514
4 YANG Y , ZHU J , ZHANG T , et al.PHD-finger domain protein 5A functions as a novel oncoprotein in lung adenocarcinoma[J]J Exp Clin Cancer Res, 2018, 37( 1): 65.
doi: 10.1186/s13046-018-0736-0
5 WANG Z , YANG X , LIU C , et al.Acetylation of PHF5A modulates stress responses and colorectal carcinogenesis through alternative splicing-mediated upregulation of KDM3A[J]Mol Cell, 2019, 74( 6): 1250-1263.e6.
doi: 10.1016/j.molcel.2019.04.009
6 STRIKOUDIS A , LAZARIS C , TRIMARCHI T , et al.Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a[J]Nat Cell Biol, 2016, 18( 11): 1127-1138.
doi: 10.1038/ncb3424
7 TRAPPE R , AHMED M , GLÄSER B , et al.Identification and characterization of a novel murine multigene family containing a PHD-finger-like motif[J]Biochem Biophysl Res Commun, 2002, 293( 2): 816-826.
doi: 10.1016/S0006-291X(02)00277-2
8 TRAPPE R , SCHULZE E , RZYMSKI T , et al.The Caenorhabditis elegans ortholog of human PHF5a shows a muscle-specific expression domain and is essential for C. elegans morphogenetic development[J]Biochem Biophysl Res Commun, 2002, 297( 4): 1049-1057.
doi: 10.1016/S0006-291X(02)02276-3
9 BEGUM N A , HAQUE F , STANLIE A , et al.Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition[J/OL]EMBO J, 2021, 40( 12): e106393.
doi: 10.15252/embj.2020106393
10 OLTRA E , VERDE F , WERNER R , et al.A novel RING-finger-like protein Ini1 is essential for cell cycle progression in fission yeast[J]J Cell Sci, 2004, 117( 6): 967-974.
doi: 10.1242/jcs.00946
11 SCHINDLER U , BECKMANN H , CASHMORE A R . HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region[J]Plant J, 1993, 4( 1): 137-150.
doi: 10.1046/j.1365-313X.1993.04010137.x
12 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339
WANG Tianyi, WANG Yingxiang, YOU Chenjiang. Structural and functional characteristics of plant PHD domain-containing proteins[J]. Yi Chuan, 2021, 43(4): 323-339. (in Chinese)
13 ZHANG Y , QIAN J , GU C , et al.Alternative splicing and cancer: a systematic review[J]Sig Transduct Target Ther, 2021, 6( 1): 78.
doi: 10.1038/s41392-021-00486-7
14 TENG T , TSAI J H , PUYANG X , et al.Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex[J]Nat Commun, 2017, 8( 1): 15522.
doi: 10.1038/ncomms15522
15 RZYMSKI T , GRZMIL P , MEINHARDT A , et al.PHF5A represents a bridge protein between splicing proteins and ATP-dependent helicases and is differentially expressed during mouse spermatogenesis[J]Cytogenet Genome Res, 2008, 121( 3-4): 232-244.
doi: 10.1159/000138890
16 LEE S C W , ABDEL-WAHAB O . Therapeutic targeting of splicing in cancer[J]Nat Med, 2016, 22( 9): 976-986.
doi: 10.1038/nm.4165
17 MAO S , LI Y , LU Z , et al.PHD finger protein 5A promoted lung adenocarcinoma progression via alternative splicing[J]Cancer Med, 2019, 8( 5): 2429-2441.
doi: 10.1002/cam4.2115
18 CHANG Y , ZHAO Y , WANG L , et al.PHF5A promotes colorectal cancer progression by alternative splicing of TEAD2[J]Mol Ther Nucleic Acids, 2021, 1215-1227.
doi: 10.1016/j.omtn.2021.10.025
19 KFIR N , LEV-MAOR G , GLAICH O , et al.SF3B1 association with chromatin determines splicing outcomes[J]Cell Rep, 2015, 11( 4): 618-629.
doi: 10.1016/j.celrep.2015.03.048
20 MARTINEZ E , PALHAN V B , TJERNBERG A , et al.Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo[J]Mol Cell Biol, 2001, 21( 20): 6782-6795.
doi: 10.1128/MCB.21.20.6782-6795.2001
21 HUANG G , YE S , ZHOU X , et al.Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network[J]Cell Mol Life Sci, 2015, 72( 9): 1741-1757.
doi: 10.1007/s00018-015-1833-2
22 BOYER L A , LEE T I , COLE M F , et al.Core transcriptional regulatory circuitry in human embryonic stem cells[J]Cell, 2005, 122( 6): 947-956.
doi: 10.1016/j.cell.2005.08.020
23 STRIKOUDIS A , LAZARIS C , NTZIACHRISTOS P , et al.Opposing functions of H2BK120 ubiquitylation and H3K79 methylation in the regulation of pluripotency by the Paf1 complex[J]Cell Cycle, 2017, 16( 24): 2315-2322.
doi: 10.1080/15384101.2017.1295194
24 KARMAKAR S , RAUTH S , NALLASAMY P , et al.RNA polymerase Ⅱ-associated factor 1 regulates stem cell features of pancreatic cancer cells, independently of the PAF1 complex, via interactions with PHF5A and DDX3[J]Gastroenterology, 2020, 159( 5): 1898-1915.e6.
doi: 10.1053/j.gastro.2020.07.053
25 YANG Q , ZHANG J , XU S , et al.Knockdown of PHF5A inhibits migration and invasion of HCC cells via downregulating NF-κB signaling[J]Biomed Res Int, 2019, 1621854.
doi: 10.1155/2019/1621854
26 FALCK E , KLINGA-LEVAN K . Expression patterns of Phf5a/PHF5A and Gja1/GJA1 in rat and human endometrial cancer[J]Cancer Cell Int, 2013, 13( 1): 43.
doi: 10.1186/1475-2867-13-43
27 MOHANTA S , SEKHAR KHORA S , SURESH A . Cancer stem cell based molecular predictors of tumor recurrence in oral squamous cell carcinoma[J]Arch Oral Biol, 2019, 92-106.
doi: 10.1016/j.archoralbio.2019.01.002
28 HUBERT C G , BRADLEY R K , DING Y , et al.Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A[J]Genes Dev, 2013, 27( 9): 1032-1045.
doi: 10.1101/gad.212548.112
29 辛梦阳, 王嘉倍. PHF5A在肿瘤发生发展中作用的研究进展[J]. 医学综述, 2021, 27(16): 3178-3182
XIN Mengyang, WANG Jiabei. Research progress in role of PHF5A in tumor development[J]. Medical Recapitulate, 2021, 27(16): 3178-3182. (in Chinese)
30 ZHAO S , LIU Q , LI J , et al.Construction and validation of prognostic regulation network based on RNA-binding protein genes in lung squamous cell carcinoma[J]DNA Cell Biol, 2021, 40( 12): 1563-1583.
doi: 10.1089/dna.2021.0145
31 XU N , LIU F , WU S , et al.CHD4 mediates proliferation and migration of non-small cell lung cancer via the RhoA/ROCK pathway by regulating PHF5A[J]BMC Cancer, 2020, 20( 1): 262.
doi: 10.1186/s12885-020-06762-z
32 YANG Y, LI M, ZHOU X, et al. PHF5A Contributes to the Maintenance of the cancer stem-like phenotype in non-small cell lung cancer by regulating histone deacetylase 8[J]. Ann Clin Lab Sci, 2022, 52(3): 439-451
33 曹一凡, 张如通, 苟雅雯, 等. PHF5A通过NF-κB通路影响胃癌细胞MGC803的增殖和迁移[J]. 安徽医科大学学报, 2020, 55(8): 1198-1203
CAO Yifan, ZHANG Rutong, GOU Yawen, et al. Effect of PHF5A on proliferation and migration of human gastric cancer cells via regulating NF-κB signaling[J]. Acta Universitatis Medicinalis Anhui, 2020, 55(8): 1198-1203. (in Chinese)
34 SATO M , MUGURUMA N , NAKAGAWA T , et al.High antitumor activity of pladienolide B and its derivative in gastric cancer[J]Cancer Sci, 2014, 105( 1): 110-116.
doi: 10.1111/cas.12317
35 A spliceosome protein is essential for glioma stem cell viability[J]. Cancer Discov, 2013, 3(7): OF22
36 OLTRA E , PFEIFER I , WERNER R . Ini, a small nuclear protein that enhances the response of the connexin43 gene to estrogen[J]Endocrinology, 2003, 144( 7): 3148-3158.
doi: 10.1210/en.2002-0176
37 REYA T , MORRISON S J , CLARKE M F , et al.Stem cells, cancer, and cancer stem cells[J]Nature, 2001, 414( 6859): 105-111.
doi: 10.1038/35102167
38 NAJAFI M , FARHOOD B , MORTEZAEE K . Cancer stem cells (CSCs) in cancer progression and therapy[J]J Cell Physiol, 2019, 234( 6): 8381-8395.
doi: 10.1002/jcp.27740
39 MAJI D , GROSSFIELD A , KIELKOPF C L . Structures of SF3b1 reveal a dynamic Achilles heel of spliceosome assembly: implications for cancer-associated abnormalities and drug discovery[J]Biochim Biophys Acta Gene Regulatory Mech, 2019, 1862( 11-12): 194440.
doi: 10.1016/j.bbagrm.2019.194440
40 LARSEN N A. The SF3b complex is an integral component of the spliceosome and targeted by natural product-based inhibitors [J]. Subcell Biochem, 2021, 96: 409-432
41 BONNAL S C , LÓPEZ-OREJA I , VALCÁRCEL J . Roles and mechanisms of alternative splicing in cancer —— implications for care[J]Nat Rev Clin Oncol, 2020, 17( 8): 457-474.
doi: 10.1038/s41571-020-0350-x
42 KAIDA D , MOTOYOSHI H , TASHIRO E , et al.Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre- mRNA[J]Nat Chem Biol, 2007, 3( 9): 576-583.
doi: 10.1038/nchembio.2007.18
43 KOTAKE Y , SAGANE K , OWA T , et al.Splicing factor SF3b as a target of the antitumor natural product pladienolide[J]Nat Chem Biol, 2007, 3( 9): 570-575.
doi: 10.1038/nchembio.2007.16
44 CORRIONERO A , MIÑANA B , VALCÁRCEL J . Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A[J]Genes Dev, 2011, 25( 5): 445-459.
doi: 10.1101/gad.2014311
45 WANG B , LO U G , WU K , et al.Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer[J]Int J Cancer, 2017, 141( 10): 2121-2130.
doi: 10.1002/ijc.30893
46 YOSHIKAWA Y , ISHIBASHI A , TAKEHARA T , et al.Design and synthesis of 1,2-deoxy-pyranose derivatives of spliceostatin A toward prostate cancer treatment[J]ACS Med Chem Lett, 2020, 11( 6): 1310-1315.
doi: 10.1021/acsmedchemlett.0c00153
47 MAGUIRE S L , LEONIDOU A , WAI P , et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer[J]J Pathol, 2015, 235( 4): 571-580.
doi: 10.1002/path.4483
48 LARRAYOZ M , BLAKEMORE S J , DOBSON R C , et al.The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1[J]Leukemia, 2016, 30( 2): 351-360.
doi: 10.1038/leu.2015.286
49 FURUMAI R , UCHIDA K , KOMI Y , et al.Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF[J]Cancer Sci, 2010, 101( 11): 2483-2489.
doi: 10.1111/j.1349-7006.2010.01686.x
50 YOKOI A , KOTAKE Y , TAKAHASHI K , et al.Biological validation that SF3b is a target of the antitumor macrolide pladienolide[J]FEBS J, 2011, 278( 24): 4870-4880.
doi: 10.1111/j.1742-4658.2011.08387.x
51 MIZUI Y , SAKAI T , IWATA M , et al.Pladienolides, new substances from culture of streptomyces platensis mer-11107 Ⅲ. In vitro and in vivo antitumor activities[J]J Antibiot, 2004, 57( 3): 188-196.
doi: 10.7164/antibiotics.57.188
52 JORGE J , PETRONILHO S , ALVES R , et al.Apoptosis induction and cell cycle arrest of pladienolide B in erythroleukemia cell lines[J]Invest New Drugs, 2020, 38( 2): 369-377.
doi: 10.1007/s10637-019-00796-2
53 ZHANG Q , DI C , YAN J , et al.Inhibition of SF3b1 by pladienolide B evokes cycle arrest, apoptosis induction and p73 splicing in human cervical carcinoma cells[J]Artif Cells Nanomed Biotechnol, 2019, 47( 1): 1273-1280.
doi: 10.1080/21691401.2019.1596922
54 ALORS-PEREZ E , BLÁZQUEZ-ENCINAS R , ALCALÁ S , et al.Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug[J]J Exp Clin Cancer Res, 2021, 40( 1): 382.
doi: 10.1186/s13046-021-02153-9
55 SCIARRILLO R , WOJTUSZKIEWICZ A , EL HASSOUNI B , et al.Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma[J]eBiomedicine, 2019, 215-225.
doi: 10.1016/j.ebiom.2018.12.025
56 SINGH S , AHMED D , DOLATSHAD H , et al.The SF3B1 K700E mutation induces R-Loop accumulation and associated DNA damage[J]Blood, 2019, 134( Supplement_1): 4219.
doi: 10.1182/blood-2019-126981
57 SANKAR S , GUILLEN NAVARRO M , PONTHAN F , et al.The SF3b splicing complex regulates DNA damage response in acute lymphoblastic leukemia[J]Blood, 2019, 134( Supplement_1): 1237.
doi: 10.1182/blood-2019-124787
58 SCIARRILLO R , WOJTUSZKIEWICZ A , KOOI I E , et al.Glucocorticoid resistant pediatric acute lymphoblastic leukemia samples display altered splicing profile and vulnerability to spliceosome modulation[J]Cancers, 2020, 12( 3): 723.
doi: 10.3390/cancers12030723
59 CRETU C , AGRAWAL A A , COOK A , et al.Structural basis of splicing modulation by antitumor macrolide compounds[J]Mol Cell, 2018, 70( 2): 265-273.e8.
doi: 10.1016/j.molcel.2018.03.011
[1] 吴雪青,于捷,谈贝,陈忠. 开窍中药在神经病理性疼痛治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2022, 51(5): 523-533.
[2] 王晓杰,惠琦,金子,饶凤琴,靳磊,余丙洁,BANDA Joshua,李校堃. 生长因子在眼的发育及眼部疾病调控中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 613-625.
[3] 王晓杰,惠琦,金子,饶凤琴,余丙洁,靳磊,BANDA Joshua,李校堃. 细胞因子类药物在眼科临床的应用进展[J]. 浙江大学学报(医学版), 2022, 51(5): 626-633.
[4] 毛宝杰,王明,万曙. 血小板衍生生长因子及其受体在脑出血中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 634-639.
[5] 何颖慧,王志萍. 分子伴侣HSP40/DNAJ蛋白家族及其在神经退行性疾病中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 640-646.
[6] 李芸,陈新. T淋巴细胞体外发育方法的研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 491-499.
[7] 周璐佳,梁景岩,熊天庆. 间充质干细胞来源的外泌体调节缺血性脑卒中后炎症反应的研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 500-506.
[8] 袁伟,张世忠,主鸿鹄. FLT3抑制剂治疗急性髓系白血病患者研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 507-514.
[9] 薛初晴,傅君芬. 生长激素以外的促生长疗法研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 515-520.
[10] 邹杰林,毛靖,石鑫. 牙髓-牙本质复合体再生的影响因素及其生物学策略[J]. 浙江大学学报(医学版), 2022, 51(3): 350-361.
[11] 孙萍萍,邹炜. 活细胞RNA成像技术及其在生物医学中应用研究进展[J]. 浙江大学学报(医学版), 2022, 51(3): 362-372.
[12] 邵玥明,荀静娜,陈军,卢洪洲. 人类免疫缺陷病毒感染早期启动抗逆转录病毒治疗的意义[J]. 浙江大学学报(医学版), 2022, 51(3): 373-379.
[13] 杨朝森,张晓明. 囊泡转运在肌萎缩侧索硬化中的作用研究进展[J]. 浙江大学学报(医学版), 2022, 51(3): 380-387.
[14] 刘志超,钱周旸,王英男,王慧明. 程序性坏死在骨关节炎病理机制和治疗中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 261-265.
[15] 李健宜,佟丹丹,林俊生. 恶性肿瘤饥饿疗法研究现状[J]. 浙江大学学报(医学版), 2022, 51(2): 241-250.