综述 |
|
|
|
|
活细胞RNA成像技术及其在生物医学中应用研究进展 |
孙萍萍1,2,邹炜1,2,*( ) |
1. 浙江大学医学院附属第四医院,浙江 义乌 322000 2. 浙江大学医学院转化医学研究院,浙江 杭州 310058 |
|
Research progress of live-cell RNA imaging techniques |
SUN Pingping1,2,ZOU Wei1,2,*( ) |
1. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China; 2. Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China |
1 |
RUDKING T, STOLLARB D. High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence[J]Nature, 1977, 265( 5593): 472-473.
doi: 10.1038/265472a0
|
2 |
FEMINOA M, FAYF S, FOGARTYK, et al.Visualization of single RNA transcripts in situ[J]Science, 1998, 280( 5363): 585-590.
doi: 10.1126/science.280.5363.585
|
3 |
RAJA, VAN DEN BOGAARDP, RIFKINS A, et al.Imaging individual mRNA molecules using multiple singly labeled probes[J]Nat Methods, 2008, 5( 10): 877-879.
doi: 10.1038/nmeth.1253
|
4 |
CHENJ, MCSWIGGEND, ÜNALE. Single molecule fluorescence in situ hybridization (smFISH) analysis in budding yeast vegetative growth and meiosis[J]J Vis Exp, 2018, 57774.
doi: 10.3791/57774
|
5 |
BHADURIA, SANDOVAL-ESPINOSAC, OTERO-GARCIAM, et al.An atlas of cortical arealization identifies dynamic molecular signatures[J]Nature, 2021, 598( 7879): 200-204.
doi: 10.1038/s41586-021-03910-8
|
6 |
ENGC H L, LAWSONM, ZHUQ, et al.Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH[J]Nature, 2019, 568( 7751): 235-239.
doi: 10.1038/s41586-019-1049-y
|
7 |
RODRIQUESS G, STICKELSR R, GOEVAA, et al.Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution[J]Science, 2019, 363( 6434): 1463-1467.
doi: 10.1126/science.aaw1219
|
8 |
SATOH, DASS, SINGERR H, et al.Imaging of dna and RNA in living eukaryotic cells to reveal spatiotemporal dynamics of gene expression[J]Annu Rev Biochem, 2020, 89( 1): 159-187.
doi: 10.1146/annurev-biochem-011520-104955
|
9 |
BRASELMANNE, RATHBUNC, RICHARDSE M, et al.Illuminating RNA biology: tools for imaging RNA in live mammalian cells[J]Cell Chem Biol, 2020, 27( 8): 891-903.
doi: 10.1016/j.chembiol.2020.06.010
|
10 |
TUTUCCIE, LIVINGSTONN M, SINGERR H, et al.Imaging mRNA in vivo, from birth to death[J]Annu Rev Biophys, 2018, 47( 1): 85-106.
doi: 10.1146/annurev-biophys-070317-033037
|
11 |
BERTRANDE, CHARTRANDP, SCHAEFERM, et al.Localization of ASH1 mRNA particles in living yeast[J]Mol Cell, 1998, 2( 4): 437-445.
doi: 10.1016/s1097-2765(00)80143-4
|
12 |
MURAMOTOT, CANNOND, GIERLINSKIM, et al.Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation[J]Proc Natl Acad Sci U S A, 2012, 109( 19): 7350-7355.
doi: 10.1073/pnas.1117603109
|
13 |
LARSOND R, ZENKLUSEND, WUB, et al.Real-time observation of transcription initiation and elongation on an endogenous yeast gene[J]Science, 2011, 332( 6028): 475-478.
doi: 10.1126/science.1202142
|
14 |
DAIGLEN, ELLENBERGJ. λN-GFP: an RNA reporter system for live-cell imaging[J]Nat Methods, 2007, 4( 8): 633-636.
doi: 10.1038/nmeth1065
|
15 |
URBANEKM O, GALKA-MARCINIAKP, OLEJNICZAKM, et al.RNA imaging in living cells——methods and applications[J]RNA Biol, 2014, 11( 8): 1083-1095.
doi: 10.4161/RNA.35506
|
16 |
YANGL Z, WANGY, LIS Q, et al.Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems[J]Mol Cell, 2019, 76( 6): 981-997.e7.
doi: 10.1016/j.molcel.2019.10.024
|
17 |
TYAGIS, KRAMERF R. Molecular beacons: probes that fluoresce upon hybridization[J]Nat Biotechnol, 1996, 14( 3): 303-308.
doi: 10.1038/nbt0396-303
|
18 |
CHENX, ZHANGD, SUN, et al.Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs[J]Nat Biotechnol, 2019, 37( 11): 1287-1293.
doi: 10.1038/s41587-019-0249-1
|
19 |
DOLGOSHEINAE V, JENGS C Y, PANCHAPAKESANS S S, et al.RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking[J]ACS Chem Biol, 2014, 9( 10): 2412-2420.
doi: 10.1021/cb500499x
|
20 |
WUJ, ZACCARAS, KHUPERKARD, et al.Live imaging of mRNA using RNA-stabilized fluorogenic proteins[J]Nat Methods, 2019, 16( 9): 862-865.
doi: 10.1038/s41592-019-0531-7
|
21 |
CHUBBJ R, TRCEKT, SHENOYS M, et al.Transcriptional pulsing of a developmental gene[J]Curr Biol, 2006, 16( 10): 1018-1025.
doi: 10.1016/j.cub.2006.03.092
|
22 |
FORRESTK M, GAVISE R. Live Imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in drosophila[J]Curr Biol, 2003, 13( 14): 1159-1168.
doi: 10.1016/s0960-9822(03)00451-2
|
23 |
SHAV-TALY, DARZACQX, SHENOYS M, et al.Dynamics of single mrnps in nuclei of living cells[J]Science, 2004, 304( 5678): 1797-1800.
doi: 10.1126/science.1099754
|
24 |
LIONNETT, CZAPLINSKIK, DARZACQX, et al.A transgenic mouse for in vivo detection of endogenous labeled mRNA[J]Nat Methods, 2011, 8( 2): 165-170.
doi: 10.1038/nmeth.1551
|
25 |
YOONY J, WUB, BUXBAUMA R, et al.Glutamate-induced RNA localization and translation in neurons[J]Proc Natl Acad Sci U S A, 2016, 113( 44):
doi: 10.1073/pnas.1614267113
|
26 |
WUB, MISKOLCIV, SATOH, et al.Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences[J]Genes Dev, 2015, 29( 8): 876-886.
doi: 10.1101/gad.259358.115
|
27 |
GARCIAJ F, PARKERR. MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system[J]RNA, 2015, 21( 8): 1393-1395.
doi: 10.1261/rna.051797.115
|
28 |
HEINRICHS, SIDLERC L, AZZALINC M, et al.Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing[J]RNA, 2017, 23( 2): 134-141.
doi: 10.1261/rna.057786.116
|
29 |
GARCIAJ F, PARKERR. Ubiquitous accumulation of 3′ mRNA decay fragments in Saccharomyces cerevisiae mRNAs with chromosomally integrated MS2 arrays[J]RNA, 2016, 22( 5): 657-659.
doi: 10.1261/rna.056325.116
|
30 |
HAIMOVICHG, ZABEZHINSKYD, HAASB, et al.Use of the MS2 aptamer and coat protein for RNA localization in yeast: a response to “MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system”[J]RNA, 2016, 22( 5): 660-666.
doi: 10.1261/rna.055095.115
|
31 |
TUTUCCIE, VERAM, BISWASJ, et al.An improved MS2 system for accurate reporting of the mRNA life cycle[J]Nat Methods, 2018, 15( 1): 81-89.
doi: 10.1038/nmeth.4502
|
32 |
VERA M, TUTUCCI E, SINGER R H. Imaging single mRNA molecules in mammalian cells using an optimized MS2-MCP system[J]. , 2019, 2038: 3-20
|
33 |
XUH, WANGJ, LIANGY, et al.TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells[J/OL]Nucleic Acids Res, 2020, 48( 22): e127.
doi: 10.1093/nar/gkaa906
|
34 |
LIMF, PEABODYD S. RNA recognition site of PP7 coat protein[J]Nucleic Acids Res, 2002, 30( 19): 4138-4144.
doi: 10.1093/nar/gkf552
|
35 |
LIZ, ZHANGP, ZHANGR, et al.A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia[J]Cell Rep, 2021, 35( 5): 109072.
doi: 10.1016/j.celrep.2021.109072
|
36 |
HOCINES, RAYMONDP, ZENKLUSEND, et al.Single-molecule analysis of gene expression using two-color RNA labeling in live yeast[J]Nat Methods, 2013, 10( 2): 119-121.
doi: 10.1038/nmeth.2305
|
37 |
WUB, CHAOJ A, SINGERR H. Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNA in living cells[J]Biophysl J, 2012, 102( 12): 2936-2944.
doi: 10.1016/j.bpj.2012.05.017
|
38 |
LANGES, KATAYAMAY, SCHMIDM, et al.Simultaneous transport of different localized mRNA species revealed by live-cell imaging[J]Traffic, 2008, 9( 8): 1256-1267.
doi: 10.1111/j.1600-0854.2008.00763.x
|
39 |
KÖNIGJ, BAUMANNS, KOEPKEJ, et al.The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs[J]EMBO J, 2009, 28( 13): 1855-1866.
doi: 10.1038/emboj.2009.145
|
40 |
SCHÖNBERGERJ, HAMMESU Z, DRESSELHAUST. In vivo visualization of RNA in plants cells using the λN22 system and a GATEWAY-compatible vector series for candidate RNAs[J]Plant J, 2012, 71( 1): 173-181.
doi: 10.1111/j.1365-313X.2012.04923.x
|
41 |
NELLESD A, FANGM Y, O′CONNELLM R, et al.Programmable RNA tracking in live cells with CRISPR/Cas9[J]Cell, 2016, 165( 2): 488-496.
doi: 10.1016/j.cell.2016.02.054
|
42 |
ABUDAYYEHO O, GOOTENBERGJ S, KONERMANNS, et al.C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]Science, 2016, 353( 6299): f5573.
doi: 10.1126/science.aaf5573
|
43 |
SMARGONA A, COXD B T, PYZOCHAN K, et al.Cas13b is a type Ⅵ-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins csx27 and csx28[J]Mol Cell, 2017, 65( 4): 618-630.e7.
doi: 10.1016/j.molcel.2016.12.023
|
44 |
KONERMANNS, LOTFYP, BRIDEAUN J, et al.Transcriptome engineering with RNA-targeting type Ⅵ-D CRISPR effectors[J]Cell, 2018, 173( 3): 665-676.e14.
doi: 10.1016/j.cell.2018.02.033
|
45 |
XUC, ZHOUY, XIAOQ, et al.Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes[J]Nat Methods, 2021, 18( 5): 499-506.
doi: 10.1038/s41592-021-01124-4
|
46 |
KANNANS, ALTAE-TRANH, JINX, et al.Compact RNA editors with small Cas13 proteins[J]Nat Biotechnol, 2022, 40( 2): 194-197.
doi: 10.1038/s41587-021-01030-2
|
47 |
SANTANGELO P J, ALONAS E, JUNG J, et al. Probes for intracellular RNA imaging in live cells[J]. , 2012, 505: 383-399
|
48 |
RICARDO M, LUIS V. Molecular beacons: powerful tools for imaging RNA in living cells[J]. , 2011: 741723
|
49 |
MAXWELLD J, TAYLORJ R, NIES. Self-assembled nanoparticle probes for recognition and detection of biomolecules[J]J Am Chem Soc, 2002, 124( 32): 9606-9612.
doi: 10.1021/ja025814p
|
50 |
SONGS, LIANGZ, ZHANGJ, et al.Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis[J]Angew Chem Int Ed, 2009, 48( 46): 8670-8674.
doi: 10.1002/anie.200901887
|
51 |
CONLONP, YANGC J, WUY, et al.Pyrene excimer signaling molecular beacons for probing nucleic acids[J]J Am Chem Soc, 2008, 130( 1): 336-342.
doi: 10.1021/ja076411y
|
52 |
CHIC W, LAOY H, LIY S, et al.A quantum dot-aptamer beacon using a DNA intercalating dye as the fret reporter: application to label-free thrombin detection[J]Biosens Bioelectron, 2011, 26( 7): 3346-3352.
doi: 10.1016/j.bios.2011.01.015
|
53 |
GIFFORDL K, JORDAND, PATTANAYAKV, et al.Stemless self-quenching reporter molecules identify target sequences in mRNA[J]Anal Biochem, 2005, 347( 1): 77-88.
doi: 10.1016/j.ab.2005.08.030
|
54 |
ZHENGJ, YANGR, SHIM, et al.Rationally designed molecular beacons for bioanalytical and biomedical applications[J]Chem Soc Rev, 2015, 44( 10): 3036-3055.
doi: 10.1039/c5cs00020c
|
55 |
HANS X, JIAX, MAJ, et al.Molecular beacons: a novel optical diagnostic tool[J]Arch Immunol Ther Exp, 2013, 61( 2): 139-148.
doi: 10.1007/s00005-012-0209-7
|
56 |
CHENM, MAZ, WUX, et al.A molecular beacon-based approach for live-cell imaging of RNA transcripts with minimal target engineering at the single-molecule level[J]Sci Rep, 2017, 7( 1): 1550.
doi: 10.1038/s41598-017-01740-1
|
57 |
PAIGEJ S, WUK Y, JAFFREYS R. RNA Mimics of green fluorescent protein[J]Science, 2011, 333( 6042): 642-646.
doi: 10.1126/science.1207339
|
58 |
AUTOURA, JENGC Y S, CAWTEA D, et al.Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells[J]Nat Commun, 2018, 9( 1): 656.
doi: 10.1038/s41467-018-02993-8
|
59 |
HANGHWAN L, HEAJI S, JUDITH K. Dynamics of Notch-dependent transcriptional bursting in its native context[J]. , 2019, 50 (4): 426-435. e4
|
60 |
ALAMOSS, REIMERA, NIYOGIK K, et al.Quantitative imaging of RNA polymerase Ⅱ activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics[J]Nat Plants, 2021, 7( 8): 1037-1049.
doi: 10.1038/s41477-021-00976-0
|
61 |
TSUBOIT, VIANAM P, XUF, et al.Mitochondrial volume fraction and translation duration impact mitochondrial mRNA localization and protein synthesis[J/OL]eLife, 2020, e57814.
doi: 10.7554/eLife.57814
|
62 |
MARTINR M, RINOJ, CARVALHOC, et al.Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity[J]Cell Rep, 2013, 4( 6): 1144-1155.
doi: 10.1016/j.celrep.2013.08.013
|
63 |
WANY, ANASTASAKISD G, RODRIGUEZJ, et al.Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection[J]Cell, 2021, 184( 11): 2878-2895.e20.
doi: 10.1016/j.cell.2021.04.012
|
64 |
DUFOURTJ, BELLECM, TRULLOA, et al.Imaging translation dynamics in live embryos reveals spatial heterogeneities[J]Science, 2021, 372( 6544): 840-844.
doi: 10.1126/science.abc3483
|
65 |
LEEE K, KIMH H, KUWANOY, et al.hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies[J]Nat Struct Mol Biol, 2010, 17( 6): 732-739.
doi: 10.1038/nsmb.1815
|
66 |
RODRIGUEZJ, LARSOND R. Transcription in living cells: molecular mechanisms of bursting[J]Annu Rev Biochem, 2020, 89( 1): 189-212.
doi: 10.1146/annurev-biochem-011520-105250
|
67 |
TUNNACLIFFEE, CHUBBJ R. What is a transcriptional burst?[J]Trends Genet, 2020, 36( 4): 288-297.
doi: 10.1016/j.tig.2020.01.003
|
68 |
XUH, SKINNERS O, SOKACA M, et al.Stochastic kinetics of nascent RNA[J]Phys Rev Lett, 2016, 117( 12): 128101.
doi: 10.1103/PhysRevLett.117.128101
|
69 |
SEPULVEDA L A, XU H, ZHANG J, et al. Measurement of gene regulation in individual cells reveals rapid switching between promoter states[J]. , 2016, 351 (6278): 1218-1222
|
70 |
SKINNERS O, XUH, NAGARKAR-JAISWALS, et al.Single-cell analysis of transcription kinetics across the cell cycle[J/OL]eLife, 2016, e12175.
doi: 10.7554/eLife.12175
|
71 |
HOPPEC, BOWLESJ R, MINCHINGTONT G, et al.Modulation of the promoter activation rate dictates the transcriptional response to graded bmp signaling levels in the drosophila embryo[J]Dev Cell, 2020, 54( 6): 727-741.e7.
doi: 10.1016/j.devcel.2020.07.007
|
72 |
BISWASJ, LIW, SINGERR H, et al.Imaging organization of RNA processing within the nucleus[J]Cold Spring Harb Perspect Biol, 2021, 13( 12): a039453.
doi: 10.1101/cshperspect.a039453
|
73 |
KATAOKAN, MATSUMOTOE, MASAKIS. Mechanistic insights of aberrant splicing with splicing factor mutations found in myelodysplastic syndromes[J]Int J Mol Sci, 2021, 22( 15): 7789.
doi: 10.3390/ijms22157789
|
74 |
BOVAIRDS, PATELD, PADILLAJ C A, et al.Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways[J]FEBS Lett, 2018, 592( 17): 2948-2972.
doi: 10.1002/1873-3468.13228
|
75 |
MOORES, JÄRVELINA I, DAVISI, et al.Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer[J]Curr Opin Genet Dev, 2018, 112-120.
doi: 10.1016/j.gde.2017.11.006
|
76 |
CHIARUTTINIC, VICARIOA, LIZ, et al.Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation[J]Proc Natl Acad Sci U S A, 2009, 106( 38): 16481-16486.
doi: 10.1073/pnas.0902833106
|
77 |
WANGC, HANB, ZHOUR, et al.Real-time imaging of translation on single mRNA transcripts in live cells[J]Cell, 2016, 165( 4): 990-1001.
doi: 10.1016/j.cell.2016.04.040
|
78 |
WUB, ELISCOVICHC, YOONY J, et al.Translation dynamics of single mRNAs in live cells and neurons[J]Science, 2016, 352( 6292): 1430-1435.
doi: 10.1126/science.aaf1084
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|