专题报道 |
|
|
|
|
嵌合抗原受体T细胞治疗恶性实体瘤新进展 |
刘娇1,涂晓璇2,刘璐璐2,*( ),方维佳2,*( ) |
常山县人民医院全科医学科,浙江 衢州 324200 浙江大学医学院附属第一医院肿瘤内科 恶性肿瘤预警与干预教育部重点实验室,浙江 杭州 310003 |
|
Advances in CAR-T cell therapy for malignant solid tumors |
LIU Jiao1,TU Xiaoxuan2,LIU Lulu2,*( ),FANG Weijia2,*( ) |
1. Department of General Medicine, People’s Hospital of Changshan County, Quzhou 324200, Zhejiang Province, China; 2. Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Malignant Tumor Early Warning and Intervention of Ministry of Education, Hangzhou 310003, China |
引用本文:
刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
LIU Jiao,TU Xiaoxuan,LIU Lulu,FANG Weijia. Advances in CAR-T cell therapy for malignant solid tumors. J Zhejiang Univ (Med Sci), 2022, 51(2): 175-184.
链接本文:
https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0044
或
https://www.zjujournals.com/med/CN/Y2022/V51/I2/175
|
1 |
CAOW, CHENH D, YUY W, et al.Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]Chin Med J, 2021, 134( 7): 783-791.
doi: 10.1097/CM9.0000000000001474
|
2 |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28 ZHENG Rongshou, SUN Kexin, ZHANG Siwei, et al. Report of cancer epidemiology in China, 2015[J]. Chinese Journal of Oncology, 2019, 41(1):19-28. (in Chinese)
|
3 |
BRAHMERJ R, TYKODIS S, CHOWL Q M, et al.Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]N Engl J Med, 2012, 366( 26): 2455-2465.
doi: 10.1056/NEJMoa1200694
|
4 |
CURRANK J, BRENTJENSR J. Chimeric antigen receptor T cells for cancer immunotherapy[J]J Clin Oncol, 2015, 33( 15): 1703-1706.
doi: 10.1200/JCO.2014.60.3449
|
5 |
LIJ, LIW, HUANGK, et al.Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward[J]J Hematol Oncol, 2018, 11( 1): 22.
doi: 10.1186/s13045-018-0568-6
|
6 |
LOUISC U, SAVOLDOB, DOTTIG, et al.Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma[J]Blood, 2011, 118( 23): 6050-6056.
doi: 10.1182/blood-2011-05-354449
|
7 |
FUCÀG, REPPELL, LANDONIE, et al.Enhancing chimeric antigen receptor T-cell efficacy in solid tumors[J]Clin Cancer Res, 2020, 26( 11): 2444-2451.
doi: 10.1158/1078-0432.CCR-19-1835
|
8 |
QI C, QIN Y, LIU D, et al. 1372O CLDN 18.2-targeted CAR-T cell therapy in patients with cancers of the digestive system[J]. Ann Oncol, 2021, 32: S1040
|
9 |
INAGUMAS, WANGZ, LASOTAJ, et al.Comprehensive immunohistochemical study of mesothelin (MSLN) using different monoclonal antibodies 5B2 and MN-1 in 1562 tumors with evaluation of its prognostic value in malignant pleural mesothelioma[J]Oncotarget, 2017, 8( 16): 26744-26754.
doi: 10.18632/oncotarget.15814
|
10 |
MORELLOA, SADELAINM, ADUSUMILLIP S. Mesothelin-targeted CARs: driving T cells to solid tumors[J]Cancer Discov, 2016, 6( 2): 133-146.
doi: 10.1158/2159-8290.CD-15-0583
|
11 |
WATANABEK, LUOY, DAT, et al.Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses[J/OL]JCI Insight, 2018, 3( 7): e99573.
doi: 10.1172/jci.insight.99573
|
12 |
ZHAOY, MOONE, CARPENITOC, et al.Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor[J]Cancer Res, 2010, 70( 22): 9053-9061.
doi: 10.1158/0008-5472.CAN-10-2880
|
13 |
HAASA R, TANYIJ L, O’HARAM H, et al.Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers[J]Mol Ther, 2019, 27( 11): 1919-1929.
doi: 10.1016/j.ymthe.2019.07.015
|
14 |
HONGD S, JOHNSONM, TANYIJ L, et al.Abstract CT105: preliminary safety and efficacy of gavocabtagene autoleucel (gavo-cel, TC-210), a T cell receptor fusion construct (TRuCTM), in patients with treatment refractory mesothelin overexpressing solid tumors[J]Cancer Res, 2021, 81( 13_Supplement): CT105.
doi: 10.1158/1538-7445.AM2021-CT105
|
15 |
TANGX, LIUF, LIUZ, et al.Bioactivity and safety of B7‐H3‐targeted chimeric antigen receptor T cells against anaplastic meningioma[J/OL]Clin Transl Immunol, 2020, 9( 6): e1137.
doi: 10.1002/cti2.1137
|
16 |
FILMUSJ, SELLECKS B. Glypicans: proteoglycans with a surprise[J]J Clin Invest, 2001, 108( 4): 497-501.
doi: 10.1172/JCI13712
|
17 |
BIY, JIANGH, WANGP, et al.Treatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager[J]Oncotarget, 2017, 8( 32): 52866-52876.
doi: 10.18632/oncotarget.17905
|
18 |
LIK, PANX, BIY, et al.Adoptive immunotherapy using T lymphocytes redirected to glypican-3 for the treatment of lung squamous cell carcinoma[J]Oncotarget, 2016, 7( 3): 2496-2507.
doi: 10.18632/oncotarget.6595
|
19 |
GAOH, LIK, TUH, et al.Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma[J]Clin Cancer Res, 2014, 20( 24): 6418-6428.
doi: 10.1158/1078-0432.CCR-14-1170
|
20 |
SHID, SHIY, KASEBA O, et al.Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials[J]Clin Cancer Res, 2020, 26( 15): 3979-3989.
doi: 10.1158/1078-0432.CCR-19-3259
|
21 |
O′ROURKED M, NASRALLAHM L P, DESAIA, et al.A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma[J]Sci Transl Med, 2017, 9( 399): eaaa0984.
doi: 10.1126/scitranslmed.aaa0984
|
22 |
FILLEYA C, HENRIQUEZM, DEYM. CART immunotherapy: development, success, and translation to malignant gliomas and other solid tumors[J]Front Oncol, 2018, 453.
doi: 10.3389/fonc.2018.00453
|
23 |
WANGY, CHENM, WUZ, et al.CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial[J/OL]Oncoimmunology, 2018, 7( 7): e1440169.
doi: 10.1080/2162402X.2018.1440169
|
24 |
MAJZNERR G, MACKALLC L. Tumor antigen escape from CAR T-cell therapy[J]Cancer Discov, 2018, 8( 10): 1219-1226.
doi: 10.1158/2159-8290.CD-18-0442
|
25 |
PESKE J D, WOODS A B, ENGELHARD V H. Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment[J]. , 2015, 128: 263-307
|
26 |
LEYK, LAUDANNAC, CYBULSKYM I, et al.Getting to the site of inflammation: the leukocyte adhesion cascade updated[J]Nat Rev Immunol, 2007, 7( 9): 678-689.
doi: 10.1038/nri2156
|
27 |
KERSHAWM H, WANGG, WESTWOODJ A, et al.Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2[J]Hum Gene Ther, 2002, 13( 16): 1971-1980.
doi: 10.1089/10430340260355374
|
28 |
WANGG, LUX, DEYP, et al.Targeting YAP-dependent MDSC infiltration impairs tumor progression[J]Cancer Discov, 2016, 6( 1): 80-95.
doi: 10.1158/2159-8290.CD-15-0224
|
29 |
FEIGC, JONESJ O, KRAMANM, et al.Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer[J]Proc Natl Acad Sci U S A, 2013, 110( 50): 20212-20217.
doi: 10.1073/pnas.1320318110
|
30 |
ZHANGH, YEZ L, YUANZ G, et al.New strategies for the treatment of solid tumors with CAR-T cells[J]Int J Biol Sci, 2016, 12( 6): 718-729.
doi: 10.7150/ijbs.14405
|
31 |
BEATTYG L, MOONE K. Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment[J/OL]Oncoimmunology, 2014, 3( 11): e970027.
doi: 10.4161/21624011.2014.970027
|
32 |
MOHAMMEDS, SUKUMARANS, BAJGAINP, et al.Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer[J]Mol Ther, 2017, 25( 1): 249-258.
doi: 10.1016/j.ymthe.2016.10.016
|
33 |
ANDERSONK G, STROMNESI M, GREENBERGP D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies[J]Cancer Cell, 2017, 31( 3): 311-325.
doi: 10.1016/j.ccell.2017.02.008
|
34 |
MOTZG T, SANTOROS P, WANGL P, et al.Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]Nat Med, 2014, 20( 6): 607-615.
doi: 10.1038/nm.3541
|
35 |
OLIVERA J, LAUP K H, UNSWORTHA S, et al.Tissue-dependent tumor microenvironments and their impact on immunotherapy responses[J]Front Immunol, 2018, 70.
doi: 10.3389/fimmu.2018.00070
|
36 |
CORRALESL, MATSONV, FLOODB, et al.Innate immune signaling and regulation in cancer immunotherapy[J]Cell Res, 2017, 27( 1): 96-108.
doi: 10.1038/cr.2016.149
|
37 |
KOHLHAPPF J, KAUFMANH L. molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy[J]Clin Cancer Res, 2016, 22( 5): 1048-1054.
doi: 10.1158/1078-0432.CCR-15-2667
|
38 |
NISHION, DIACONUI, LIUH, et al.Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors[J]Cancer Res, 2014, 74( 18): 5195-5205.
doi: 10.1158/0008-5472.CAN-14-0697
|
39 |
MOONE K, WANGL C S, BEKDACHEK, et al.Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines[J/OL]Oncoimmunology, 2018, 7( 3): e1395997.
doi: 10.1080/2162402X.2017.1395997
|
40 |
TANOUEK, ROSEWELL SHAWA, WATANABEN, et al.Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors[J]Cancer Res, 2017, 77( 8): 2040-2051.
doi: 10.1158/0008-5472.CAN-16-1577
|
41 |
WINGA, FAJARDOC A, POSEY JRA D, et al.Improving CAR T-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager[J]Cancer Immunol Res, 2018, 6( 5): 605-616.
doi: 10.1158/2326-6066.CIR-17-0314
|
42 |
ROSEWELL SHAWA, PORTERC E, WATANABEN, et al.Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer[J]Mol Ther, 2017, 25( 11): 2440-2451.
doi: 10.1016/j.ymthe.2017.09.010
|
43 |
EVGINL, HUFFA L, WONGTHIDAP, et al.Oncolytic virus-derived type Ⅰ interferon restricts CAR T cell therapy[J]Nat Commun, 2020, 11( 1): 3187.
doi: 10.1038/s41467-020-17011-z
|
44 |
EDWARDSJ P, EMENSL A. The multikinase inhibito sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE2 in murine macrophages[J]Int Immunopharmacol, 2010, 10( 10): 1220-1228.
doi: 10.1016/j.intimp.2010.07.002
|
45 |
WUX, LUOH, SHIB, et al.Combined antitumor effects of sorafenib and GPC3-CAR T cells in mouse models of hepatocellular carcinoma[J]Mol Ther, 2019, 27( 8): 1483-1494.
doi: 10.1016/j.ymthe.2019.04.020
|
46 |
FANG W, FU Q, ZHAO Q, et al. Phase I trial of fourth-generation chimeric antigen receptor T-cells targeting glypican-3 for advanced hepatocellular carcinoma[J].J Clin Oncol, 2021, 39 (15_suppl): 4088
|
47 |
CHERKASSKYL, MORELLOA, VILLENA-VARGASJ, et al.Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition[J]J Clin Invest, 2016, 126( 8): 3130-3144.
doi: 10.1172/JCI83092
|
48 |
LONGA H, HASOW M, SHERNJ F, et al.4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors[J]Nat Med, 2015, 21( 6): 581-590.
doi: 10.1038/nm.3838
|
49 |
MCGRAYA J R, HALLETTR, BERNARDD, et al.Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor[J]Mol Ther, 2014, 22( 1): 206-218.
doi: 10.1038/mt.2013.255
|
50 |
SPRANGERS, SPAAPENR M, ZHAY, et al.Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8+ T cells[J]Sci Transl Med, 2013, 5( 200): 200ra116.
doi: 10.1126/scitranslmed.3006504
|
51 |
MOONE K, WANGL C, DOLFID V, et al.Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J]Clin Cancer Res, 2014, 20( 16): 4262-4273.
doi: 10.1158/1078-0432.CCR-13-2627
|
52 |
SRIVASTAVAS, FURLANS N, JAEGER-RUCKSTUHLC A, et al.Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade[J]Cancer Cell, 2021, 39( 2): 193-208.e10.
doi: 10.1016/j.ccell.2020.11.005
|
53 |
HUW, ZIZ, JINY, et al.CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions[J]Cancer Immunol Immunother, 2019, 68( 3): 365-377.
doi: 10.1007/s00262-018-2281-2
|
54 |
GARGETTT, YUW, DOTTIG, et al.GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade[J]Mol Ther, 2016, 24( 6): 1135-1149.
doi: 10.1038/mt.2016.63
|
55 |
BURGAR A, THORNM, POINTG R, et al.Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T[J]Cancer Immunol Immunother, 2015, 64( 7): 817-829.
doi: 10.1007/s00262-015-1692-6
|
56 |
ADUSUMILLIP S, ZAUDERERM G, RIVIÈREI, et al.A phase Ⅰ trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab[J]Cancer Discov, 2021, 11( 11): 2748-2763.
doi: 10.1158/2159-8290.CD-21-0407
|
57 |
HONGM, CLUBBJ D, CHENY Y. Engineering CAR-T cells for next-generation cancer therapy[J]Cancer Cell, 2020, 38( 4): 473-488.
doi: 10.1016/j.ccell.2020.07.005
|
58 |
RENJ, LIUX, FANGC, et al.Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition[J]Clin Cancer Res, 2017, 23( 9): 2255-2266.
doi: 10.1158/1078-0432.CCR-16-1300
|
59 |
GIUFFRIDAL, SEKK, HENDERSONM A, et al.CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy[J]Nat Commun, 2021, 12( 1): 3236.
doi: 10.1038/s41467-021-23331-5
|
60 |
LIUY, DIS, SHIB, et al.Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma[J]J Immunol, 2019, 203( 1): 198-207.
doi: 10.4049/jimmunol.1800033
|
61 |
ZHAO Z, GUO W, FANG S, et al. An armored GPC3-directed CAR-T for refractory or relapsed hepatocellular carcinoma in China: a phaseⅠtrial[J]. J Clin Oncol, 2021, 39(15): 4095
|
62 |
HUANGZ, WUY, ALLENM E, et al.Engineering light-controllable CAR T cells for cancer immunothe-rapy[J]Sci Adv, 2020, 6( 8): eaay9209.
doi: 10.1126/sciadv.aay9209
|
63 |
WUY, LIUY, HUANGZ, et al.Control of the activity of CAR-T cells within tumours via focused ultrasound[J]Nat Biomed Eng, 2021, 5( 11): 1336-1347.
doi: 10.1038/s41551-021-00779-w
|
64 |
RAFIQS, HACKETTC S, BRENTJENSR J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy[J]Nat Rev Clin Oncol, 2020, 17( 3): 147-167.
doi: 10.1038/s41571-019-0297-y
|
65 |
YUS, YIM, QINS, et al.Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity[J]Mol Cancer, 2019, 18( 1): 125.
doi: 10.1186/s12943-019-1057-4
|
66 |
SRIVASTAVAS, SALTERA I, LIGGITTD, et al.Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting[J]Cancer Cell, 2019, 35( 3): 489-503.e8.
doi: 10.1016/j.ccell.2019.02.003
|
67 |
CHOEJ H, WATCHMAKERP B, SIMICM S, et al.SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma[J]Sci Transl Med, 2021, 13( 591): eabe7378.
doi: 10.1126/scitranslmed.abe7378
|
68 |
CHOJ H, COLLINSJ J, WONGW W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses[J]Cell, 2018, 173( 6): 1426-1438.e11.
doi: 10.1016/j.cell.2018.03.038
|
69 |
CHOJ H, OKUMAA, SOFJANK, et al.Engineering advanced logic and distributed computing in human CAR immune cells[J]Nat Commun, 2021, 12( 1): 792.
doi: 10.1038/s41467-021-21078-7
|
70 |
VASSAUXG, MARTIN-DUQUEP. Use of suicide genes for cancer gene therapy: study of the different approaches[J]Expert Opin Biol Ther, 2004, 4( 4): 519-530.
doi: 10.1517/14712598.4.4.519
|
71 |
CASUCCIM, FALCONEL, CAMISAB, et al.Extracellular NGFR spacers allow efficient tracking and enrichment of fully functional CAR-T cells coexpressing a suicide gene[J]Front Immunol, 2018, 507.
doi: 10.3389/fimmu.2018.00507
|
72 |
GARGETTT, BROWNM P. The inducible caspase-9 suicide gene system as a “safety switch†to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells[J]Front Pharmacol, 2014, 235.
doi: 10.3389/fphar.2014.00235
|
73 |
GOODC R, AZNARM A, KURAMITSUS, et al.An NK-like CAR T cell transition in CAR T cell dysfunction[J]Cell, 2021, 184( 25): 6081-6100.e26.
doi: 10.1016/j.cell.2021.11.016
|
74 |
WEBERE W, PARKERK R, SOTILLOE, et al.Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling[J]Science, 2021, 372( 6537): eaba1786.
doi: 10.1126/science.aba1786
|
75 |
LIUY, LIUG, WANGJ, et al.Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors[J]Sci Transl Med, 2021, 13( 586): eabb5191.
doi: 10.1126/scitranslmed.abb5191
|
76 |
WUP, ZHANGT, LIUB, et al.Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition[J]Mol Cell, 2019, 73( 5): 1015-1027.e7.
doi: 10.1016/j.molcel.2018.12.018
|
77 |
HUSEM. Mechanical forces in the immune system[J]Nat Rev Immunol, 2017, 17( 11): 679-690.
doi: 10.1038/nri.2017.74
|
78 |
国家药品监督管理局药品审评中心. 免疫细胞治疗产品临床试验技术指导原则(试行) [EB/OL]. (2021-02-10)[2022-04-26]. https://www.cde.org.cn/main/att/download/c928d167224f2d5c32c5c32943d213d7 Drug Evaluation Center of the National Medical Products Administration. Technical guidelines for clinical trials of immune cell therapy products (trial)[EB/OL].(2021-02-10)[2022-04-26].https://www.cde.org.cn/main/att/download/c928d167224f2d5c32c5c32943d213d7. (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|