Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (5): 627-632    DOI: 10.3724/zdxbyxb-2021-0242
原著     
二甲双胍通过抑制内质网应激诱导的细胞凋亡改善结肠炎黏膜上皮屏障损伤
王金钢1,2,陈春晓1,*(),任于晗2,周辛欣1,俞珊2
1.浙江大学附属第一医院消化内科,浙江 杭州 310003
2.浙江大学附属第一医院嵊州分院 嵊州市人民医院消化内科,浙江 嵊州 312400
Metformin alleviates intestinal epithelial barrier damage by inhibiting endoplasmic reticulum stress-induced cell apoptosis in colitis cell model
WANG Jingang1,2,CHEN Chunxiao1,*(),REN Yuhan2,ZHOU Xinxin1,YU Shan2
1. Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
2. Department of Gastroenterology, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, Shengzhou People’s Hospital, Shengzhou 312400, Zhejiang Province, China
 全文: PDF(3644 KB)   HTML( 21 )
摘要:

目的:探讨二甲双胍对溃疡性结肠炎黏膜上皮屏障损伤的作用及具体机制。方法:用人结肠癌细胞系Caco-2与人单核细胞系THP-1构建结肠炎体外细胞共培养模型,用1?mmol/L二甲双胍作用24?h后,运用流式细胞术检测肠上皮细胞凋亡情况,采用蛋白质印迹法检测紧密连接蛋白和内质网应激相关蛋白的表达水平。结果:与模型对照组比较,二甲双胍组细胞凋亡率从(14.22±2.34)%下降至(9.88±0.61)%(t=3.119,P<0.05),紧密连接蛋白1和密封蛋白1相对表达量增加(t=5.172和3.546,均P<0.05),内质网分子伴侣葡萄糖调节蛋白(GRP)78和内质网应激诱导的凋亡相关分子C/EBP同源蛋白(CHOP)、胱天蛋白酶(caspase)-12的蛋白表达水平下降(均P<0.05),蛋白激酶R样内质网激酶(PERK)和真核生物起始因子2α(eIF2α)的磷酸化水平下降(均P<0.05)。结论:二甲双胍可以通过减轻结肠炎肠上皮细胞的细胞凋亡和增加紧密连接蛋白的表达改善结肠炎肠黏膜上皮屏障损伤,其分子机制可能与抑制内质网应激诱导的细胞凋亡途径有关。

关键词: 结肠炎, 溃疡性二甲双胍内质网应激细胞凋亡细胞共培养紧密连接蛋白    
Abstract:

Objective:To investigate the effect and mechanism of metformin on intestinal epithelial barrier injury in ulcerative colitis. Methods:A cell model of colitis was established by co-culture of human colon cancer cell line Caco-2 and human monocyte cell line THP-1. The colitis model cells were treated with metformin at concentration of 1?mmol/L for 24?h. Flow cytometry was used to detect Caco-2 cell apoptosis, and Western blotting was used to detect the protein expression of tight junction proteins and endoplasmic reticulum stress-related proteins. Results: After metformin treatment, the apoptosis rate of Caco-2 cells was decreased from (14.22±2.34)% to (9.88±0.61)% (t=3.119, P<0.05), and the expression levels of tight junction protein-1 and claudin-1 increased (t=5.172 and 3.546, both P<0.05). In addition, the expression levels of endoplasmic reticulum-related proteins glucose regulated protein (GRP) 78, C/EBP homologous protein (CHOP) and caspase-12, as well as the phosphorylation level of PRKR-like endoplasmic reticulum kinase (PERK) and eukaryotic translation initiation factor 2α (eIF2α) decreased (allP<0.05).Conclusion:Metformin may alleviate the intestinal epithelial barrier damage in colitis by reducing intestinal epithelial cell apoptosis and increasing the expression of tight junction proteins, which may be associated with the inhibition of endoplasmic reticulum stress-induced apoptotic pathway.

Key words: Colitis, ulcerative    Metformin    Endoplasmic reticulum stress    Apoptosis    Co-culture cell    Tight junction protein
收稿日期: 2021-07-10 出版日期: 2021-12-29
:  R310.17  
通讯作者: 陈春晓     E-mail: 13906523922@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王金钢
陈春晓
任于晗
周辛欣
俞珊

引用本文:

王金钢,陈春晓,任于晗,周辛欣,俞珊. 二甲双胍通过抑制内质网应激诱导的细胞凋亡改善结肠炎黏膜上皮屏障损伤[J]. 浙江大学学报(医学版), 2021, 50(5): 627-632.

WANG Jingang,CHEN Chunxiao,REN Yuhan,ZHOU Xinxin,YU Shan. Metformin alleviates intestinal epithelial barrier damage by inhibiting endoplasmic reticulum stress-induced cell apoptosis in colitis cell model. J Zhejiang Univ (Med Sci), 2021, 50(5): 627-632.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0242        https://www.zjujournals.com/med/CN/Y2021/V50/I5/627

图 1  模型对照组和二甲双胍组结肠炎肠上皮细胞凋亡流式细胞图
图 2  模型对照组和二甲双胍组紧密连接蛋白1和密封蛋白1表达电泳图
图 3  模型对照组和二甲双胍组内质网应激相关蛋白表达电泳图GRP:葡萄糖调节蛋白;PERK:蛋白激酶R样内质网激酶;eIF2α:真核生物起始因子2α;CHOP:C/EBP同源蛋白;caspase:胱天蛋白酶.

组别

n

GRP78

CHOP

caspase-12

磷酸化PERK/PERK

磷酸化eIF2α/eIF2α

模型对照组

3

1.145±0.048

1.127±0.061

1.173±0.076

0.822±0.012

0.818±0.057

二甲双胍组

3

0.925±0.138

0.760±0.148

0.985±0.045

0.650±0.065

0.568±0.126

t

3.018

4.586

3.691

5.197

3.618

P

<0.05

<0.01

<0.05

<0.05

<0.05

表 1  模型对照组和二甲双胍组内质网应激相关蛋白表达量比较
1 PETERSONL W, ARTISD. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]Nat Rev Immunol, 2014, 14( 3): 141-153.
doi: 10.1038/nri3608
2 NGS C, SHIH Y, HAMIDIN, et al.Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]Lancet, 2017, 390( 10114): 2769-2778.
doi: 10.1016/S0140-6736(17)32448-0
3 HIRTENR P, SANDSB E. New therapeutics for ulcerative colitis[J]Annu Rev Med, 2021, 72( 1): 199-213.
doi: 10.1146/annurev-med-052919-120048
4 MAX S, DAIZ L, SUNK J, et al.Intestinal epithelial cell endoplasmic reticulum stress and inflammatory bowel disease pathogenesis: an update review[J]Front Immunol, 2017, 1271.
doi: 10.3389/fimmu.2017.01271
5 EUGENES P, REDDYV S, TRINATHJ. Endoplasmic reticulum stress and intestinal inflammation: a perilous union[J]Front Immunol, 2020, 543022.
doi: 10.3389/fimmu.2020.543022
6 KASERA, BLUMBERGR S. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease[J]Semin Immunol, 2009, 21( 3): 156-163.
doi: 10.1016/j.smim.2009.01.001
7 BAIB, CHENH B. Metformin: a novel weapon against inflammation[J]Front Pharmacol, 2021, 622262.
doi: 10.3389/fphar.2021.622262
8 CHEN Y C, LI H, WANG J. Mechanisms of metformin inhibiting cancer invasion and migration[J]. Am J Transl Res, 2020, 12(9): 4885-4901
9 SOUKASA A, HAOH, WUL. Metformin as anti-aging therapy: is it for everyone?[J]Trends Endocrinol Metab, 2019, 30( 10): 745-755.
doi: 10.1016/j.tem.2019.07.015
10 HEL. Metformin and systemic metabolism[J]Trends Pharmacol Sci, 2020, 41( 11): 868-881.
doi: 10.1016/j.tips.2020.09.001
11 CHENL, WANGJ, YOUQ, et al.Activating AMPK to restore tight junction assembly in intestinal epithelium and to attenuate experimental colitis by metformin[J]Front Pharmacol, 2018, 761.
doi: 10.3389/fphar.2018.00761
12 DENGJ, ZENGL, LAIX, et al.Metformin protects against intestinal barrier dysfunction via AMPKα1-dependent inhibition of JNK signalling activation[J]J Cell Mol Med, 2018, 22( 1): 546-557.
doi: 10.1111/jcmm.13342
13 DI FUSCOD, DINALLOV, MONTELEONEI, et al.Metformin inhibits inflammatory signals in the gut by controlling AMPK and p38 MAP kinase activation[J]Clin Sci, 2018, 132( 11): 1155-1168.
doi: 10.1042/CS20180167
14 EL-MAHDYN A, EL-SAYADM E S, EL-KADEMA H, et al.Metformin alleviates inflammation in oxazolone induced ulcerative colitis in rats: plausible role of sphingosine kinase 1/sphingosine 1 phosphate signaling pathway[J]Immunopharmacol Immunotoxicol, 2021, 43( 2): 192-202.
doi: 10.1080/08923973.2021.1878214
15 LIUX, SUNZ, WANGH. Metformin alleviates experimental colitis in mice by up-regulating TGF-β signaling[J]Biotech Histochem, 2021, 96( 2): 146-152.
doi: 10.1080/10520295.2020.1776896
16 PANDEYA, VERMAS, KUMARV L. Metformin maintains mucosal integrity in experimental model of colitis by inhibiting oxidative stress and pro-inflammatory signaling[J]Biomed Pharmacother, 2017, 1121-1128.
doi: 10.1016/j.biopha.2017.08.020
17 RENM T, GUM L, ZHOUX X, et al.Sirtuin 1 alleviates endoplasmic reticulum stress-mediated apoptosis of intestinal epithelial cells in ulcerative colitis[J]World J Gastroenterol, 2019, 25( 38): 5800-5813.
doi: 10.3748/wjg.v25.i38.5800
18 VAN DER POSTS, JABBARK S, BIRCHENOUGHG, et al.Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis[J]Gut, 2019, 68( 12): 2142-2151.
doi: 10.1136/gutjnl-2018-317571
19 PARADIST, BèGUEH, BASMACIYANL, et al.Tight junctions as a key for pathogens invasion in intestinal epithelial cells[J]Int J Mol Sci, 2021, 22( 5): 2506.
doi: 10.3390/ijms22052506
20 TANY, GUANY, SUNY, et al.Correlation of intestinal mucosal healing and tight junction protein expression in ulcerative colitis patients[J]Am J Med Sci, 2019, 357( 3): 195-204.
doi: 10.1016/j.amjms.2018.11.011
21 TSENGC H. Metformin use is associated with a lower risk of inflammatory bowel disease in patients with type 2 diabetes mellitus[J]J Crohns Colitis, 2021, 15( 1): 64-73.
doi: 10.1093/ecco-jcc/jjaa136
22 LUM, LAWRENCED A, MARSTERSS, et al.Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis[J]Science, 2014, 345( 6192): 98-101.
doi: 10.1126/science.1254312
23 KASERA, LEEA H, FRANKEA, et al.XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease[J]Cell, 2008, 134( 5): 743-756.
doi: 10.1016/j.cell.2008.07.021
24 YONEDAT, IMAIZUMIK, OONOK, et al.Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress[J]J Biol Chem, 2001, 276( 17): 13935-13940.
doi: 10.1074/jbc.M010677200
[1] 张冬梅,曹琪璐,景临林,赵秀华,马慧萍. PC12细胞低压性缺氧损伤模型的建立[J]. 浙江大学学报(医学版), 2021, 50(5): 614-620.
[2] 黄卓群,余夏飞,刘星宇,马康,黄敏华,李芳芳,杨巍,牛建国. 瞬时受体电位 M2抑制剂 A10对缺糖缺氧后复糖复氧细胞的保护作用[J]. 浙江大学学报(医学版), 2021, 50(1): 106-112.
[3] 叶嘉仪,龚恒佩,王凌峰,黄真,仇凤梅,钟晓明. 玄参环烯醚萜苷对氧糖剥夺再灌注细胞模型内质网钙稳态的调控作用[J]. 浙江大学学报(医学版), 2020, 49(6): 705-713.
[4] 方娟,潘志成,郭晓纲. INK4基因座中反义非编码RNA调控细胞增殖与凋亡影响动脉粥样硬化的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 113-117.
[5] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[6] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[7] 杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[8] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[9] 梁刚, 牛育苗, 李一涵, 魏安怡, 董静尹, 曾玲晖. 雷帕霉素在大鼠局灶性脑缺血再灌注后24 h给药对脑损伤的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 443-449.
[10] 林卡娜,林美丽,顾莹芬,张顺国,黄诗颖. G蛋白偶联受体17在视网膜神经节细胞缺氧损伤中的作用[J]. 浙江大学学报(医学版), 2018, 47(5): 487-492.
[11] 林美娜,许瑞元,章涛,张琳,梅序桥. 类风湿关节炎患者外周血单个核细胞中c-FLIP与外源性凋亡途径的相关性分析[J]. 浙江大学学报(医学版), 2018, 47(4): 381-388.
[12] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[13] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[14] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[15] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.