Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (2): 187-194    DOI: 10.3724/zdxbyxb-2021-0131
专题报道     
基于锥形线束CT数据的智能颈椎骨龄评估系统的建立
冯筱妍1(),卢诗娟2,李一鸣2,林军1,*
1.浙江大学医学院附属第一医院口腔科,浙江 杭州 310003
2.浙江大学计算机辅助设计与图形学国家重点实验室,浙江 杭州 310058
Establishment of an intelligent cervical vertebrae maturity assessment system based on cone beam CT data
FENG Xiaoyan1(),LU Shijuan2,LI Yiming2,LIN Jun1,*
1. Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
2. State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4178 KB)   HTML( 10 )
摘要:

目的:建立智能颈椎骨龄评估系统,初步评估基于锥形线束CT数据的智能颈椎骨龄评估系统的可靠性和临床应用价值。方法:选取60例生长发育期(8~16岁)儿童同时段拍摄的侧位体层片和锥形线束CT作为实验数据。在锥形线束CT上通过Otsu算法提取患者的面部区域,使用三维最小二乘法获得一个矢状面,并在此矢状面上应用超像素算法来对图像进行分割以获取颈椎区域,随后分别进行人工定点与形态学算法的自动定点,对两组坐标数据进行一致性检验。根据颈椎骨龄分期指南的定义,进行算法设计,建立智能颈椎骨龄评估系统。同时通过同期的侧位体层片进行人工颈椎骨龄判读。采用加权Kappa一致性检验及Gamma相关度检验比较人工侧位体层片颈椎骨龄判读结果与智能颈椎骨龄评估结果,判断智能颈椎骨龄预测系统的临床应用价值。结果:基于锥形线束CT数据自动化捕捉的颈椎形态整体上具有较高的形态识别度,在预测13个点中的8个拐点时,自动定点与人工定点在X轴和Y轴上的Wilcoxon检验结果差异均无统计学意义(均P>0.05)。同时,智能系统的颈椎骨龄评估结果与人工识别结果有较强的一致性和相关性(加权Kappa值0.877,Gamma值0.991,均P<0.05)。结论:基于锥形线束CT数据进行的自动化颈椎形态捕捉和智能颈椎骨龄预测系统有一定的可靠性,自动化程度高,具有一定的临床应用价值。

关键词: 颈椎骨龄智能评估锥形线束计算机断层扫描术侧位体层片    
Abstract:

Objective:To establish an intelligent cervical vertebra maturity assessment system, and to evaluate the reliability and clinical value of the system. Methods: Sixty children aged 8-16?years were recruited in the study. Lateral cephalometric radiograph and cone beam CT (CBCT) were taken at the same period. Based on the CBCT data, the system automatically extracted the patient’s facial area through Otsu’s method, intercepted the sagittal plane by three-dimensional least squares method, captured the second to fourth cervical vertebrae by superpixel segmentation. And then selected points were marked automatically through morphological algorithm and manual method. Consistency test was performed on the two sets of data to compare the reliability of automated cervical morphology capture. According to the parameters of morphological identification, positioning and staging algorithms were designed to form the intelligent cervical vertebra maturity assessment system. The cervical vertebra maturity was also judged manually on the lateral cephalometric radiograph. The weighted Kappa test and the Gamma correlation coefficient were subsequently applied to evaluate the consistency and correlation. Results: The results showed that the cervical vertebra features automatically captured based on CBCT data had a high accuracy on the overall morphological recognition. In the prediction of 8 inflection points out of 13 points, there was no significant difference between automatic and manual method on both X and Y axes (all P>0.05). The assessment results of the cervical vertebra maturity of the intelligent system had strong consistency and correlation with the manual recognition results (weighted Kappa value=0.877, Gamma value=0.991, bothP<0.05).Conclusion:The intelligent cervical vertebrae maturity assessment system based on CBCT data established in this study presents reliable outcome and high degree of automation, indicating that the system may be used clinically.

Key words: Cervical vertebrae maturity    Intelligent assessment    Cone beam    Computer tomography    Lateral tomogram
收稿日期: 2021-01-11 出版日期: 2021-06-18
CLC:  R782.05  
基金资助: 国家自然科学基金(81970978)
通讯作者: 林军     E-mail: xiaoyanfeng@zju.edu.cn
作者简介: 冯筱妍,住院医师,主要从事口腔正畸临床工作;E-mail:xiaoyanfeng@zju.edu.cn;https://orcid.org/0000-0002-2171-2854
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯筱妍
卢诗娟
李一鸣
林军

引用本文:

冯筱妍,卢诗娟,李一鸣,林军. 基于锥形线束CT数据的智能颈椎骨龄评估系统的建立[J]. 浙江大学学报(医学版), 2021, 50(2): 187-194.

FENG Xiaoyan,LU Shijuan,LI Yiming,LIN Jun. Establishment of an intelligent cervical vertebrae maturity assessment system based on cone beam CT data. J Zhejiang Univ (Med Sci), 2021, 50(2): 187-194.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0131        http://www.zjujournals.com/med/CN/Y2021/V50/I2/187

D=i=1Ndi2=i=1N(zi?axi?byi?c)2
  
a=[i=1N(y?yˉ)2i=1N(x?xˉ)(z?zˉ)i=1N(x?xˉ)(y?yˉ)i=1N(y?yˉ)(z?zˉ)]/[i=1N(x?xˉ)2i=1N(y?yˉ)2?i=1N(x?xˉ)(y?yˉ)i=1N(x?xˉ)(y?yˉ)]
  
b=[i=1N(x?xˉ)2i=1N(x?xˉ)(z?zˉ)?i=1N(x?xˉ)(y?yˉ)i=1N(x?xˉ)(z?zˉ)]/[i=1N(x?xˉ)2i=1N(y?yˉ)2?i=1N(x?xˉ)(y?yˉ)i=1N(x?xˉ)(y?yˉ)]c=zˉ?axˉ?byˉ
  
图1  颈椎骨龄定量分析标志点

标志点

形态学定义

C2a

第二颈椎最前最下点

C2d

第二颈椎下缘最凹点

C2p

第二颈椎最后最下点

C3la

第三颈椎下缘最前点

C3lp

第三颈椎下缘最后点

C3ua

第三颈椎上缘最前点

C3up

第三颈椎上缘最后点

C4am

第四颈椎前缘中点

C4la

第四颈椎下缘最前点

C4lp

第四颈椎下缘最后点

C4ua

第四颈椎上缘最前点

C4um

第四颈椎上缘中点

C4up

第四颈椎下缘最后点

表1  颈椎标志点及定义
图2  McNamara颈椎骨龄(CVM)分期法
图3  智能颈椎骨龄评估算法设计
图4  颈椎骨龄自动化评估系统的技术路线
图5  颈椎形态捕捉展示
.68pt,"black","[tb]")?>

变 量

X轴

Y轴

C2a

1.00(?1.00,1.00)

0.00(?1.50,0.00)

C2d

?1.00(?2.00,?1.00)**

1.92±1.32**

C2p

?0.15±1.07

0.46±1.13

C3la

0.00(0.00,2.00)

0.62±0.87*

C3lp

1.00(0.00,1.00)

1.00(?0.50,1.50)

C3ua

0.46±1.90

0.77±1.79

C3up

1.00(?0.50,2.00)

?0.23±2.45

C4am

?2.00(?12.00,0.00)*

?0.92±7.76

C4la

1.15±2.88

0.15±1.57

C4lp

0.46±0.88

0.00(0.00,1.00)

C4ua

1.00(0.00,2.00)**

0.00(0.00,2.00)*

C4um

1.00(0.50,8.50)**

?1.85±3.31

C4up

0.85±1.82

0.31±1.32

表2  人工定点与自动定点的一致性检验结果
图6  智能颈椎骨龄评估系统与人工骨龄识别结果比较气泡内数值为例数.CVM: 颈椎骨龄分期.
1 BACCETTIT, FRANCHIL, MCNAMARA J A JR. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics[J]Semin Orthod, 2005, 11( 3): 119-129.
doi: 10.1053/j.sodo.2005.04.005
2 PERINETTIG, PRIMOZICJ, FRANCHIL, et al.Cervical vertebral maturation method: growth timing versus growth amount[J]Eur J Orthod, 2016, 38( 1): 111-112.
doi: 10.1093/ejo/cjv037
3 DZEMIDZICV, SOKICE, TIROA, et al.Computer based assessment of cervical vertebral maturation stages using digital lateral cephalograms[J]Acta Inform Med, 2015, 23( 6): 364-368.
doi: 10.5455/aim.2015.23.364-368
4 CHATZIGIANNIA, HALAZONETISD J. Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation[J]Am J Orthod Dentofacial Orthop, 2009, 136( 4): 481.e1-481.e9. discussion 481-483.
doi: 10.1016/j.ajodo.2009.04.017
5 LEIT, JIAX, ZHANGY, et al.Superpixel-based fast fuzzy c-means clustering for color image segmentation[J]IEEE T Fuzzy Syst, 2019, 27( 9): 1753-1766.
doi: 10.1109/TFUZZ.2018.2889018
6 CHENL, LINJ, XUT, et al.The longitudinal sagittal growth changes of maxilla and mandible according to quantitative cervical vertebral maturation[J]J Huazhong Univ Sci Technolog Med Sci, 2009, 29( 2): 251-256.
doi: 10.1007/s11596-009-0224-z
7 MCNAMARAJ A JR, FRANCHIL. The cervical vertebral maturation method: a user’s guide[J]Angle Orthod, 2018, 88( 2): 133-143.
doi: 10.2319/111517-787.1
8 KAPILA S. Facial growth during adolescence in early, average and late maturers[J]. Angle Orthod, 1992, 62(4): 245-246
9 PASCIUTIE, FRANCHIL, BACCETTIT, et al.Comparison of three methods to assess individual skeletal maturity[J]J Orofac Orthop, 2013, 74( 5): 397-408.
doi: 10.1007/s00056-013-0164-x
10 PERINETTIG, BRAGAC, CONTARDOL, et al.Cervical vertebral maturation: are postpubertal stages attained in all subjects?[J]Am J Orthod Dentofacial Orthop, 2020, 157( 3): 305-312.
doi: 10.1016/j.ajodo.2019.03.026
11 CARTERJ B, STONEJ D, CLARKR S, et al.Applications of cone-beam computed tomography in oral and maxillofacial surgery: an overview of published indications and clinical usage in united states academic centers and oral and maxillofacial surgery practices[J]J Oral Maxillofac Surg, 2016, 74( 4): 668-679.
doi: 10.1016/j.joms.2015.10.018
12 BYUNB R, KIMY I, YAMAGUCHIT, et al.Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls[J]Comput Math Methods Med, 2015, 405-912.
doi: 10.1155/2015/405912
13 BONFIMM A E, COSTAA L F, FUZIYA, et al.Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections[J]DentoMaxillofac Radiol, 2016, 45( 1): 20150162.
doi: 10.1259/dmfr.20150162
14 PERINETTIG, BIANCHETA, FRANCHIL, et al.Cervical vertebral maturation: an objective and transparent code staging system applied to a 6-year longitudinal investigation[J]Am J Orthod Dentofacial Orthop, 2017, 151( 5): 898-906.
doi: 10.1016/j.ajodo.2016.09.026
15 GRAYS, BENNANIH, KIESERJ A, et al.Morphometric analysis of cervical vertebrae in relation to mandibular growth[J]Am J Orthod Dentofacial Orthop, 2016, 149( 1): 92-98.
doi: 10.1016/j.ajodo.2015.06.028
16 BAPTISTAR S, QUAGLIOC L, MOURADL M E H, et al.A semi-automated method for bone age assessment using cervical vertebral maturation[J]Angle Orthod, 2012, 82( 4): 658-662.
doi: 10.2319/070111-425.1
17 AMASYAH, YILDIRIMD, AYDOGANT, et al.Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models[J]DentoMaxillofac Radiol, 2020, 49( 5): 20190441.
doi: 10.1259/dmfr.20190441
18 宋熙煜, 周利莉, 李中国, 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015, 20(5): 599-608
SONG Xiyu, ZHOU Lili, LI Zhongguo, et al. Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics, 2015, 20(5): 599-608. (in Chinese)
19 CHENL L, XUT M, JIANGJ H, et al.Quantitative cervical vertebral maturation assessment in adolescents with normal occlusion: a mixed longitudinal study[J]Am J Orthod Dentofacial Orthop, 2008, 134( 6): 720.e1-720.e7. discussion 720-721.
doi: 10.1016/j.ajodo.2008.03.014
20 CHOIY K, KIMJ, YAMAGUCHIT, et al.Cervical vertebral body’s volume as a new parameter for predicting the skeletal maturation stages[J]Biomed Res Int, 2016, 8696735-.
doi: 10.1155/2016/8696735
21 BYUNB R, KIMY I, YAMAGUCHIT, et al.Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5- to 18-year-old Japanese children[J]Clin Oral Investig, 2015, 19( 8): 2133-2140.
doi: 10.1007/s00784-015-1415-6
22 O’REILLY M T, YANNIELLO G J. Mandibular growth changes and maturation of cervical vertebrae--a longitudinal cephalometric study[J]. Angle Orthod, 1988, 58(2): 179-184
23 MITOT, SATOK, MITANIH. Predicting mandibular growth potential with cervical vertebral bone age[J]Am J Orthod Dentofacial Orthop, 2003, 124( 2): 173-177.
doi: 10.1016/S0889-5406(03)00401-3
24 CHEN F, TERADA K, HANADA K. A special method of predicting mandibular growth potential for class Ⅲ malocclusion[J]. Angle Orthod, 2005, 75(2): 191-195
[1] 陆薇,林梦娜,赵士芳,王慧明,何福明. 改良侧壁开窗式上颌窦底提升术治疗上颌后牙区缺牙伴重度骨萎缩患者临床观察[J]. 浙江大学学报(医学版), 2017, 46(6): 630-636.
[2] 翁露茜 等. 腭中缝骨皮质切开辅助快速扩弓矫治15~25岁上颌横向宽度不足患者临床研究[J]. 浙江大学学报(医学版), 0, (): 198-205.