Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (1): 32-40    DOI: 10.3724/zdxbyxb-2021-0040
专题报道     
谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制
胡鑫暘(),金洪传,朱丽媛()
浙江大学医学院附属邵逸夫医院 浙江省生物治疗重点实验室,浙江 杭州 310016
Effect of glutamine metabolism on chemoresistance and its mechanism in tumors
HU Xinyang(),JIN Hongchuan,ZHU Liyuan()
Zhejiang Provincial Key Laboratory of Biotherapy,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,Hangzhou 310016,China
 全文: PDF(2996 KB)   HTML( 19 )
摘要:

肿瘤细胞代谢重编程表现为对谷氨酰胺等营养物质摄取增加,而谷氨酰胺代谢可为在肿瘤细胞中过度激活的糖酵解和氧化磷酸化反应提供所需的原料,还可通过影响糖、脂质、蛋白质代谢的稳态平衡直接诱发肿瘤细胞对化疗药物的抵抗。针对谷氨酰胺代谢途径不同环节的抑制剂联合常规化疗药物在多种耐药肿瘤中取得了较好的临床治疗效果。谷氨酰胺代谢途径主要通过以下几种方式在肿瘤细胞耐药中发挥作用:谷氨酰胺转运体活性动态变化直接影响细胞内谷氨酰胺含量而影响细胞耐药性;肿瘤微环境中脂肪细胞、成纤维细胞及微环境代谢物通过免疫应答等方式介导耐药发生;谷氨酰胺代谢途径关键酶的表达及活性改变对肿瘤细胞耐药性的产生也至关重要。本文从转运体、肿瘤微环境及代谢酶等层面总结了谷氨酰胺代谢途径在肿瘤细胞产生化疗药物抵抗过程中的调控功能及其作用方式,以期为今后提高耐药性肿瘤的临床治疗效果提供新的思路。

关键词: 谷氨酰胺细胞代谢肿瘤耐药性综述    
Abstract:

The metabolic reprogramming of tumor cells is characterized by increased uptake of various nutrients including glutamine. Glutamine metabolism provides the required substances for glycolysis and oxidative phosphorylation and affects the homeostasis of carbohydrate,fat and protein metabolism to induce the chemoresistance of tumor cells. Combination of chemotherapeutic agents with inhibitors specific to different components of glutamine metabolic pathway has obtained favorable clinical results on various tumors. Glutamine metabolic pathway plays a role in drug resistance of tumor cells in various ways. Firstly,the dynamic change of glutamine transporters can directly affect intracellular glutamine content thereby causing drug resistance; secondly,tumor stromal cells including adipocyte,fibroblast and metabolite from tumor microenvironment would give rise to immune-mediated drug resistance; thirdly,the expression and activity of key enzymes in glutamine metabolism also has a critical role in drug resistance of tumors. This article reviews the effects of glutamine metabolic pathway in the development of tumor chemoresistance,in terms of transporters,tumor microenvironment and metabolic enzymes,to provide insight for improving the therapeutic efficacy for drug-resistant tumors.

Key words: Glutamine    Cell metabolism    Tumor    Drug resistance    Review
收稿日期: 2020-11-25 出版日期: 2021-05-15
CLC:  R730.23  
基金资助: 国家自然科学基金(81903061)
通讯作者: 朱丽媛     E-mail: 21918520@zju.edu.cn;zly_smile@126.com
作者简介: 胡鑫暘,硕士研究生,主要从事肿瘤代谢重编程过程及其蛋白修饰的功能机制研究;E-mail:21918520@zju.edu.cn;https://orcid.org/0000-0001-8988-4866
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡鑫暘
金洪传
朱丽媛

引用本文:

胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.

HU Xinyang,JIN Hongchuan,ZHU Liyuan. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors. J Zhejiang Univ (Med Sci), 2021, 50(1): 32-40.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0040        http://www.zjujournals.com/med/CN/Y2021/V50/I1/32

图 1  谷氨酰胺代谢途径示意图 RAG:大鼠肉瘤癌基因相关GTP结合蛋白;ARF1:二磷酸腺苷核糖基化因子1;mTOR:哺乳动物雷帕霉素靶蛋白;SLC1A5:溶质载体家族1成员5;SLC7A11:溶质载体家族7成员11;SLC38A9:溶质载体家族38成员9;NADPH:还原型烟酰胺腺嘌呤二核苷酸磷酸.

谷氨酰胺代谢相关靶点

促进肿瘤耐药机制

耐药癌种

耐受药物

参考文献序号

转运体

?

溶质载体家族1成员5

促进谷氨酰胺进入线粒体,促进谷胱甘肽合成

胰腺癌

吉西他滨

28

通过AMPK-AKT信号通路抑制氧化磷酸化途径

结肠癌

二甲双胍

30

溶质载体家族1成员5抑制剂联合CB-839减少耐药细胞内谷胱甘肽产生,促进活性氧积累

肝癌

CB-839

45

溶质载体家族7成员8

激活mTOR通路,促进溶质载体家族7成员8的稳定,形成正反馈,促进耐药细胞摄取更多谷氨酰胺

胰腺癌

吉西他滨

29

溶质载体家族25成员22

促进三羧酸循环中谷氨酰胺代谢物琥珀酸的积累,促进DNA甲基化以及Wnt 信号通路激活

结肠癌

5-氟尿嘧啶

48

肿瘤微环境

?

肿瘤间质脂肪细胞

分泌大量谷氨酰胺,帮助白血病细胞抵抗左旋天冬酰胺酶的作用

急性淋巴细胞白血病

左旋天冬酰胺酶

34

肿瘤间质成纤维细胞

微囊蛋白1表达下降,自噬水平升高,促进谷氨酰胺向肿瘤实质细胞转移

乳腺癌

他莫昔芬

37

谷氨酰胺代谢酶

?

谷氨酰胺酶

表达增加,细胞对谷氨酰胺代谢依赖度增加,α酮戊二酸水平增高

黑色素瘤

BRAF抑制剂

39

多形性胶质母细胞瘤

雷帕霉素、PP242

40

谷氨酸脱氢酶、谷氨酰胺酶

ADI-PEG20诱导耐药细胞短期内C-MYC表达,进而促进谷氨酸脱氢酶和谷氨酰胺酶表达,提高谷氨酰胺代谢通路的活性

黑色素瘤

ADI-PEG20

41

谷氨酸脱氢酶

低氧情况下缺氧诱导因子1α蛋白水平升高,促进谷氨酸脱氢酶表达,使得肿瘤细胞对谷氨酰胺的摄取和利用增加

肺癌

顺铂

42

调控氧化磷酸化

?

PPARδ

促进耐药细胞对谷氨酰胺依赖,并调节氧化还原稳态,促进耐药细胞增殖

肝癌

索拉菲尼

43

其他途径

?

MYC

表达上调,调节谷氨酰胺诱导的未折叠蛋白反应,使得肿瘤细胞对低糖环境的耐受增加

乳腺癌

他莫昔芬、氟维司群

46

谷氨酰胺代谢通路多靶点

耐药细胞依赖谷氨酰胺代谢提供的氮源来维持蛋白质的异常糖基化,同时维持还原性稳态

胰腺癌

吉西他滨

47

α酮戊二酸

肿瘤细胞DNA损伤修复酶ALKBH的活性发挥依赖于细胞内α酮戊二酸水平

黑色素瘤、结肠癌

甲磺酸甲酯

49

表 1  谷氨酰胺代谢通路靶点与肿瘤化疗药物抵抗机制汇总
1 SONG H, LIU D, DONG S, et al. Epitranscriptomics and epiproteomics in cancer drug resistance:therapeutic implications[J]. Sig Transduct Target Ther, 2020, 5(1): 193.
doi: 10.1038/s41392-020-00300-w
2 VASAN N, BASELGA J, HYMAN D M . A view on drug resistance in cancer[J]. Nature, 2019, 575(7782): 299-309.
doi: 10.1038/s41586-019-1730-1
3 FENDT S M, FREZZA C, EREZ A . Targeting metabolic plasticity and flexibility dynamics for cancer therapy[J]. Cancer Discov, 2020, 10(12): 1797-1807.
doi: 10.1158/2159-8290.CD-20-0844
4 ZHAO Y, BUTLER E B, TAN M . Targeting cellular metabolism to improve cancer therapeutics[J/OL]. Cell Death Dis, 2013, 4(3): e532.
doi: 10.1038/cddis.2013.60
5 KOPPENOL W H, BOUNDS P L, DANG C V . Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337.
doi: 10.1038/nrc3038
6 LIBERTI M V, LOCASALE J W . The Warburg effect:How does it benefit cancer cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218.
doi: 10.1016/j.tibs.2015.12.001
7 VANDER HEIDEN M G . Targeting cancer metabolism:a therapeutic window opens[J]. Nat Rev Drug Discov, 2011, 10(9): 671-684.
doi: 10.1038/nrd3504
8 SON J, LYSSIOTIS C A, YING H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway[J]. Nature, 2013, 496(7443): 101-105.
doi: 10.1038/nature12040
9 EREZ A, KOLODKIN-GAL I . From prokaryotes to cancer:Glutamine flux in multicellular units[J]. Trends Endocrinol Metab, 2017, 28(9): 637-644.
doi: 10.1016/j.tem.2017.05.007
10 SEMENZA G L . HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J]. J Clin Invest, 2013, 123(9): 3664-3671.
doi: 10.1172/JCI67230
11 SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport. From energy supply to sensing and beyond[J]. BioChim Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(8): 1147-1157.
doi: 10.1016/j.bbabio.2016.03.006
12 WISE D R, WARD P S, SHAY J E S, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19611-19616.
doi: 10.1073/pnas.1117773108
13 METALLO C M, GAMEIRO P A, BELL E L, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia[J]. Nature, 2012, 481(7381): 380-384.
doi: 10.1038/nature10602
14 LACEY J M, WILMORE D W . Is glutamine a conditionally essential amino acid?[J]. Nutrition Rev, 2009, 48(8): 297-309.
doi: 10.1111/j.1753-4887.1990.tb02967.x
15 RUBIN A L. Suppression of transformation by and growth adaptation to low concentrations of glutamine in NIH-3T3 cells[J]. Cancer Res,1990,50(9):2832–2839 .
16 SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J]. Front Oncol, 2017, 306.
doi: 10.3389/fonc.2017.00306
17 FERREIRA L M R, HEBRANT A, DUMONT J E . Metabolic reprogramming of the tumor[J]. Oncogene, 2012, 31(36): 3999-4011.
doi: 10.1038/onc.2011.576
18 HUANG Q, TAN Y, YIN P, et al. Metabolic characte- rization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16): 4992-5002.
doi: 10.1158/0008-5472.CAN-13-0308
19 VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B . Understanding the warburg effect:The metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
doi: 10.1126/science.1160809
20 PASTORE A, PIEMONTE F . S-glutathionylation signaling in cell biology:Progress and prospects[J]. Eur J Pharmaceutical Sci, 2012, 46(5): 279-292.
doi: 10.1016/j.ejps.2012.03.010
21 MOHAMED A, DENG X, KHURI F R, et al. Altered glutamine metabolism and therapeutic opportunities for lung cancer[J]. Clin Lung Cancer, 2014, 15(1): 7-15.
doi: 10.1016/j.cllc.2013.09.001
22 SOUBA W W, STREBEL F R, BULL J M, et al. Interorgan glutamine metabolism in the tumor-bearing rat[J]. J Surgical Res, 1988, 44(6): 720-726.
doi: 10.1016/0022-4804(88)90106-0
23 DUDRICK P S, INOUE Y, ESPAT N J, et al. Na +- dependent glutamine transport in the liver of tumour-bearing rats[J] . Surg Oncol, 1993, 2(3): 205-215.
doi: 10.1016/0960-7404(93)90008-m
24 CHEN M K, ESPAT N J, BLAND K I, et al. Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney[J]. Ann Surgery, 1993, 217(6): 655-667.
doi: 10.1097/00000658-199306000-00007
25 HENSLEY C T, WASTI A T, DEBERARDINIS R J . Glutamine and cancer:cell biology,physiology,and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684.
doi: 10.1172/JCI69600
26 DURáN R V, OPPLIGER W, ROBITAILLE A M, et al. Glutaminolysis activates Rag-mTORC1 signaling[J]. Mol Cell, 2012, 47(3): 349-358.
doi: 10.1016/j.molcel.2012.05.043
27 GANAPATHY V, THANGARAJU M, PRASAD P D . Nutrient transporters in cancer:relevance to Warburg hypothesis and beyond[J]. Pharmacol Ther, 2009, 121(1): 29-40.
doi: 10.1016/j.pharmthera.2008.09.005
28 YOO H C, PARK S J, NAM M, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells[J]. Cell Metab, 2020, 31(2): 267-283.e12.
doi: 10.1016/j.cmet.2019.11.020
29 FENG M, XIONG G, CAO Z, et al. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 274.
doi: 10.1186/s13046-018-0947-4
30 KIM J H, LEE K J, SEO Y, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism[J]. Sci Rep, 2018, 8(1): 409.
doi: 10.1038/s41598-017-18762-4
31 BLüHER M . Obesity:global epidemiology and patho- genesis[J]. Nat Rev Endocrinol, 2019, 15(5): 288-298.
doi: 10.1038/s41574-019-0176-8
32 BOCHET L, LEHUéDé C, DAUVILLIER S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer[J]. Cancer Res, 2013, 73(18): 5657-5668.
doi: 10.1158/0008-5472.CAN-13-0530
33 CALLE E E, KAAKS R . Overweight,obesity and cancer:epidemiological evidence and proposed mechanisms[J]. Nat Rev Cancer, 2004, 4(8): 579-591.
doi: 10.1038/nrc1408
34 EHSANIPOUR E A, SHENG X, BEHAN J W, et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine[J]. Cancer Res, 2013, 73(10): 2998-3006.
doi: 10.1158/0008-5472.CAN-12-4402
35 PETROVA V, ANNICCHIARICO-PETRUZZELLI M, MELINO G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1): 10.
doi: 10.1038/s41389-017-0011-9
36 MARTINEZ-OUTSCHOORN U E, LISANTI M P, SOTGIA F . Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells,fueling tumor growth[J]. Seminars Cancer Biol, 2014, 47-60.
doi: 10.1016/j.semcancer.2014.01.005
37 KO Y H, LIN Z, FLOMENBERG N, et al. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells[J]. Cancer Biol Ther, 2011, 12(12): 1085-1097.
doi: 10.4161/cbt.12.12.18671
38 MUIR A, DANAI L V, GUI D Y, et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition[J/OL]. eLife, 2017, e27713.
doi: 10.7554/eLife.27713
39 BAENKE F, CHANETON B, SMITH M, et al. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells[J]. Mol Oncol, 2016, 10(1): 73-84.
doi: 10.1016/j.molonc.2015.08.003
40 TANAKA K, SASAYAMA T, IRINO Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment[J]. J Clin Invest, 2015, 125(4): 1591-1602.
doi: 10.1172/JCI78239
41 LONG Y, TSAI W B, WANGPAICHITR M, et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming,glucose dependence,and glutamine addiction[J]. Mol Cancer Ther, 2013, 12(11): 2581-2590.
doi: 10.1158/1535-7163.MCT-13-0302
42 JIANG Z F, WANG M, XU J L, et al. Hypoxia promotes mitochondrial glutamine metabolism through HIF1α-GDH pathway in human lung cancer cells[J]. Biochem BioPhys Res Commun, 2017, 483(1): 32-38.
doi: 10.1016/j.bbrc.2017.01.015
43 KIM M J, CHOI Y K, PARK S Y, et al. PPARδ reprograms glutamine metabolism in sorafenib-resistant HCC[J]. Mol Cancer Res, 2017, 15(9): 1230-1242.
doi: 10.1158/1541-7786.MCR-17-0061
44 LIAO J, LIU P P, HOU G, et al. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling[J]. Mol Cancer, 2017, 16(1): 51.
doi: 10.1186/s12943-017-0623-x
45 JIN H, WANG S, ZAAL E A, et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer[J/OL]. eLife, 2020, e56749.
doi: 10.7554/eLife.56749
46 SHAJAHAN-HAQ A N, COOK K L, SCHWARTZ-ROBERTS J L, et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer[J]. Mol Cancer, 2014, 13(1): 239.
doi: 10.1186/1476-4598-13-239
47 CHEN R, LAI L A, SULLIVAN Y, et al. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer[J]. Sci Rep, 2017, 7(1): 7950.
doi: 10.1038/s41598-017-08436-6
48 WONG C C, XU J, BIAN X, et al. In colorectal cancer cells with mutant KRAS,SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT Signaling,stemness,and drug resistance[J]. Gastroenterology, 2020, 159(6): 2163-2180.e6.
doi: 10.1053/j.gastro.2020.08.016
[1] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[2] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[3] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[4] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[5] 张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.
[6] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[7] 付媛媛,姜晶鑫,陈述政,邱福铭. T1期乳腺癌患者发生同侧腋窝淋巴结转移风险列线图的建立[J]. 浙江大学学报(医学版), 2021, 50(1): 81-89.
[8] 杨泽然,张欣,马杰,金丽,何徐军. 大肠癌患者肿瘤相关血管中胰岛素受体表达及其与肿瘤组织病理学特征的关系[J]. 浙江大学学报(医学版), 2020, 49(6): 725-731.
[9] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[10] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[11] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[12] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[13] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[14] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[15] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.