专题报道 |
|
|
|
|
谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制 |
胡鑫暘( ),金洪传,朱丽媛( ) |
浙江大学医学院附属邵逸夫医院 浙江省生物治疗重点实验室,浙江 杭州 310016 |
|
Effect of glutamine metabolism on chemoresistance and its mechanism in tumors |
HU Xinyang( ),JIN Hongchuan,ZHU Liyuan( ) |
Zhejiang Provincial Key Laboratory of Biotherapy,Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,Hangzhou 310016,China |
1 |
SONG H, LIU D, DONG S, et al. Epitranscriptomics and epiproteomics in cancer drug resistance:therapeutic implications[J]. Sig Transduct Target Ther, 2020, 5(1): 193.
doi: 10.1038/s41392-020-00300-w
|
2 |
VASAN N, BASELGA J, HYMAN D M . A view on drug resistance in cancer[J]. Nature, 2019, 575(7782): 299-309.
doi: 10.1038/s41586-019-1730-1
|
3 |
FENDT S M, FREZZA C, EREZ A . Targeting metabolic plasticity and flexibility dynamics for cancer therapy[J]. Cancer Discov, 2020, 10(12): 1797-1807.
doi: 10.1158/2159-8290.CD-20-0844
|
4 |
ZHAO Y, BUTLER E B, TAN M . Targeting cellular metabolism to improve cancer therapeutics[J/OL]. Cell Death Dis, 2013, 4(3): e532.
doi: 10.1038/cddis.2013.60
|
5 |
KOPPENOL W H, BOUNDS P L, DANG C V . Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5): 325-337.
doi: 10.1038/nrc3038
|
6 |
LIBERTI M V, LOCASALE J W . The Warburg effect:How does it benefit cancer cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218.
doi: 10.1016/j.tibs.2015.12.001
|
7 |
VANDER HEIDEN M G . Targeting cancer metabolism:a therapeutic window opens[J]. Nat Rev Drug Discov, 2011, 10(9): 671-684.
doi: 10.1038/nrd3504
|
8 |
SON J, LYSSIOTIS C A, YING H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway[J]. Nature, 2013, 496(7443): 101-105.
doi: 10.1038/nature12040
|
9 |
EREZ A, KOLODKIN-GAL I . From prokaryotes to cancer:Glutamine flux in multicellular units[J]. Trends Endocrinol Metab, 2017, 28(9): 637-644.
doi: 10.1016/j.tem.2017.05.007
|
10 |
SEMENZA G L . HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J]. J Clin Invest, 2013, 123(9): 3664-3671.
doi: 10.1172/JCI67230
|
11 |
SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport. From energy supply to sensing and beyond[J]. BioChim Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(8): 1147-1157.
doi: 10.1016/j.bbabio.2016.03.006
|
12 |
WISE D R, WARD P S, SHAY J E S, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19611-19616.
doi: 10.1073/pnas.1117773108
|
13 |
METALLO C M, GAMEIRO P A, BELL E L, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia[J]. Nature, 2012, 481(7381): 380-384.
doi: 10.1038/nature10602
|
14 |
LACEY J M, WILMORE D W . Is glutamine a conditionally essential amino acid?[J]. Nutrition Rev, 2009, 48(8): 297-309.
doi: 10.1111/j.1753-4887.1990.tb02967.x
|
15 |
RUBIN A L. Suppression of transformation by and growth adaptation to low concentrations of glutamine in NIH-3T3 cells[J]. Cancer Res,1990,50(9):2832–2839 .
|
16 |
SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J]. Front Oncol, 2017, 306.
doi: 10.3389/fonc.2017.00306
|
17 |
FERREIRA L M R, HEBRANT A, DUMONT J E . Metabolic reprogramming of the tumor[J]. Oncogene, 2012, 31(36): 3999-4011.
doi: 10.1038/onc.2011.576
|
18 |
HUANG Q, TAN Y, YIN P, et al. Metabolic characte- rization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16): 4992-5002.
doi: 10.1158/0008-5472.CAN-13-0308
|
19 |
VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B . Understanding the warburg effect:The metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033.
doi: 10.1126/science.1160809
|
20 |
PASTORE A, PIEMONTE F . S-glutathionylation signaling in cell biology:Progress and prospects[J]. Eur J Pharmaceutical Sci, 2012, 46(5): 279-292.
doi: 10.1016/j.ejps.2012.03.010
|
21 |
MOHAMED A, DENG X, KHURI F R, et al. Altered glutamine metabolism and therapeutic opportunities for lung cancer[J]. Clin Lung Cancer, 2014, 15(1): 7-15.
doi: 10.1016/j.cllc.2013.09.001
|
22 |
SOUBA W W, STREBEL F R, BULL J M, et al. Interorgan glutamine metabolism in the tumor-bearing rat[J]. J Surgical Res, 1988, 44(6): 720-726.
doi: 10.1016/0022-4804(88)90106-0
|
23 |
DUDRICK P S, INOUE Y, ESPAT N J, et al. Na +- dependent glutamine transport in the liver of tumour-bearing rats[J] . Surg Oncol, 1993, 2(3): 205-215.
doi: 10.1016/0960-7404(93)90008-m
|
24 |
CHEN M K, ESPAT N J, BLAND K I, et al. Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney[J]. Ann Surgery, 1993, 217(6): 655-667.
doi: 10.1097/00000658-199306000-00007
|
25 |
HENSLEY C T, WASTI A T, DEBERARDINIS R J . Glutamine and cancer:cell biology,physiology,and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684.
doi: 10.1172/JCI69600
|
26 |
DURáN R V, OPPLIGER W, ROBITAILLE A M, et al. Glutaminolysis activates Rag-mTORC1 signaling[J]. Mol Cell, 2012, 47(3): 349-358.
doi: 10.1016/j.molcel.2012.05.043
|
27 |
GANAPATHY V, THANGARAJU M, PRASAD P D . Nutrient transporters in cancer:relevance to Warburg hypothesis and beyond[J]. Pharmacol Ther, 2009, 121(1): 29-40.
doi: 10.1016/j.pharmthera.2008.09.005
|
28 |
YOO H C, PARK S J, NAM M, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells[J]. Cell Metab, 2020, 31(2): 267-283.e12.
doi: 10.1016/j.cmet.2019.11.020
|
29 |
FENG M, XIONG G, CAO Z, et al. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 274.
doi: 10.1186/s13046-018-0947-4
|
30 |
KIM J H, LEE K J, SEO Y, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism[J]. Sci Rep, 2018, 8(1): 409.
doi: 10.1038/s41598-017-18762-4
|
31 |
BLüHER M . Obesity:global epidemiology and patho- genesis[J]. Nat Rev Endocrinol, 2019, 15(5): 288-298.
doi: 10.1038/s41574-019-0176-8
|
32 |
BOCHET L, LEHUéDé C, DAUVILLIER S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer[J]. Cancer Res, 2013, 73(18): 5657-5668.
doi: 10.1158/0008-5472.CAN-13-0530
|
33 |
CALLE E E, KAAKS R . Overweight,obesity and cancer:epidemiological evidence and proposed mechanisms[J]. Nat Rev Cancer, 2004, 4(8): 579-591.
doi: 10.1038/nrc1408
|
34 |
EHSANIPOUR E A, SHENG X, BEHAN J W, et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine[J]. Cancer Res, 2013, 73(10): 2998-3006.
doi: 10.1158/0008-5472.CAN-12-4402
|
35 |
PETROVA V, ANNICCHIARICO-PETRUZZELLI M, MELINO G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis, 2018, 7(1): 10.
doi: 10.1038/s41389-017-0011-9
|
36 |
MARTINEZ-OUTSCHOORN U E, LISANTI M P, SOTGIA F . Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells,fueling tumor growth[J]. Seminars Cancer Biol, 2014, 47-60.
doi: 10.1016/j.semcancer.2014.01.005
|
37 |
KO Y H, LIN Z, FLOMENBERG N, et al. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells[J]. Cancer Biol Ther, 2011, 12(12): 1085-1097.
doi: 10.4161/cbt.12.12.18671
|
38 |
MUIR A, DANAI L V, GUI D Y, et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition[J/OL]. eLife, 2017, e27713.
doi: 10.7554/eLife.27713
|
39 |
BAENKE F, CHANETON B, SMITH M, et al. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells[J]. Mol Oncol, 2016, 10(1): 73-84.
doi: 10.1016/j.molonc.2015.08.003
|
40 |
TANAKA K, SASAYAMA T, IRINO Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment[J]. J Clin Invest, 2015, 125(4): 1591-1602.
doi: 10.1172/JCI78239
|
41 |
LONG Y, TSAI W B, WANGPAICHITR M, et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming,glucose dependence,and glutamine addiction[J]. Mol Cancer Ther, 2013, 12(11): 2581-2590.
doi: 10.1158/1535-7163.MCT-13-0302
|
42 |
JIANG Z F, WANG M, XU J L, et al. Hypoxia promotes mitochondrial glutamine metabolism through HIF1α-GDH pathway in human lung cancer cells[J]. Biochem BioPhys Res Commun, 2017, 483(1): 32-38.
doi: 10.1016/j.bbrc.2017.01.015
|
43 |
KIM M J, CHOI Y K, PARK S Y, et al. PPARδ reprograms glutamine metabolism in sorafenib-resistant HCC[J]. Mol Cancer Res, 2017, 15(9): 1230-1242.
doi: 10.1158/1541-7786.MCR-17-0061
|
44 |
LIAO J, LIU P P, HOU G, et al. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling[J]. Mol Cancer, 2017, 16(1): 51.
doi: 10.1186/s12943-017-0623-x
|
45 |
JIN H, WANG S, ZAAL E A, et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer[J/OL]. eLife, 2020, e56749.
doi: 10.7554/eLife.56749
|
46 |
SHAJAHAN-HAQ A N, COOK K L, SCHWARTZ-ROBERTS J L, et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer[J]. Mol Cancer, 2014, 13(1): 239.
doi: 10.1186/1476-4598-13-239
|
47 |
CHEN R, LAI L A, SULLIVAN Y, et al. Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer[J]. Sci Rep, 2017, 7(1): 7950.
doi: 10.1038/s41598-017-08436-6
|
48 |
WONG C C, XU J, BIAN X, et al. In colorectal cancer cells with mutant KRAS,SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT Signaling,stemness,and drug resistance[J]. Gastroenterology, 2020, 159(6): 2163-2180.e6.
doi: 10.1053/j.gastro.2020.08.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|