专题报道 |
|
|
|
|
RAS基因与脂代谢在恶性肿瘤中的相互调控 |
张明佺( ),潘俊辰,黄蓬( ) |
中山大学肿瘤防治中心,广东 广州 510060 |
|
Interaction between RAS gene and lipid metabolism in cancer |
ZHANG Mingquan( ),PAN Junchen,HUANG Peng( ) |
Cancer Center,Sun Yat-Sen University,Guangzhou 510060,China |
1 |
CANON J, REX K, SAIKI A Y, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1
|
2 |
SPIEGEL J, CROMM P M, ZIMMERMANN G, et al. Small-molecule modulation of Ras signaling[J]. Nat Chem Biol, 2014, 10(8): 613-622.
doi: 10.1038/nchembio.1560
|
3 |
PAPKE B, DER C J . Drugging RAS:know the enemy[J]. Science, 2017, 355(6330): 1158-1163.
doi: 10.1126/science.aam7622
|
4 |
HANAHAN D, WEINBERG R A . Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013
|
5 |
COX A D, FESIK S W, KIMMELMAN A C, et al. Drugging the undruggable RAS:mission possible?[J]. Nat Rev Drug Discov, 2014, 13(11): 828-851.
doi: 10.1038/nrd4389
|
6 |
WATERS A M, DER C J . KRAS:the critical driver and therapeutic target for pancreatic cancer[J]. Cold Spring Harb Perspect Med, 2018, 8(9): a031435.
doi: 10.1101/cshperspect.a031435
|
7 |
SNAEBJORNSSON M T, JANAKI-RAMAN S, SCHULZE A . Greasing the wheels of the cancer machine:the role of lipid metabolism in cancer[J]. Cell Metab, 2020, 31(1): 62-76.
doi: 10.1016/j.cmet.2019.11.010
|
8 |
R?HRIG F, SCHULZE A . The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16(11): 732-749.
doi: 10.1038/nrc.2016.89
|
9 |
MEDES G,THOMAS A,WEINHOUSE S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro[J]. Cancer Res,1953,13:27–29 .
|
10 |
BROWN M S, GOLDSTEIN J L . A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 232(4746): 34-47.
doi: 10.1126/science.3513311
|
11 |
KAZANTZIS M, STAHL A . Fatty acid transport proteins,implications in physiology and disease[J]. BioChim Biophysica Acta, 2012, 1821(5): 852-857.
doi: 10.1016/j.bbalip.2011.09.010
|
12 |
CAMARDA R, ZHOU A Y, KOHNZ R A, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer[J]. Nat Med, 2016, 22(4): 427-432.
doi: 10.1038/nm.4055
|
13 |
LIN H, PATEL S, AFFLECK V S, et al. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells[J]. Neuro Oncology, 2017, 19(1): 43-54.
doi: 10.1093/neuonc/now128
|
14 |
HORTON J D, SHAH N A, WARRINGTON J A, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci USA, 2003, 100(21): 12027-12032.
doi: 10.1073/pnas.1534923100
|
15 |
GONZáLEZ A, HALL M N, LIN S C, et al. AMPK and TOR:the yin and yang of cellular nutrient sensing and growth control[J]. Cell Metab, 2020, 31(3): 472-492.
doi: 10.1016/j.cmet.2020.01.015
|
16 |
RICOULT S J H, YECIES J L, BEN-SAHRA I, et al. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP[J]. Oncogene, 2016, 35(10): 1250-1260.
doi: 10.1038/onc.2015.179
|
17 |
KAMPHORST J J, CROSS J R, FAN J, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids[J]. Proc Natl Acad Sci USA, 2013, 110(22): 8882-8887.
doi: 10.1073/pnas.1307237110
|
18 |
LIANG C, QIN Y, ZHANG B, et al. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma[J]. BioChim Biophysica Acta, 2016, 1866(2): 177-188.
doi: 10.1016/j.bbcan.2016.09.001
|
19 |
CAO J Y, DIXON S J . Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11-12): 2195-2209.
doi: 10.1007/s00018-016-2194-1
|
20 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042
|
21 |
YANG W S, STOCKWELL B R . Ferroptosis:death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176.
doi: 10.1016/j.tcb.2015.10.014
|
22 |
ZHENG J, CONRAD M . The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937.
doi: 10.1016/j.cmet.2020.10.011
|
23 |
SHIOZAKI A, IITAKA D, ICHIKAWA D, et al. xCT,component of cysteine/glutamate transporter,as an independent prognostic factor in human esophageal squamous cell carcinoma[J]. J Gastroenterol, 2014, 49(5): 853-863.
doi: 10.1007/s00535-013-0847-5
|
24 |
LUCAS L, DEL PESO L, RODRíGUEZ P, et al. Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor[J]. Oncogene, 2000, 19(3): 431-437.
doi: 10.1038/sj.onc.1203323
|
25 |
RAMíREZ DE MOLINA A, PENALVA V, LUCAS L, et al. Regulation of choline kinase activity by Ras proteins involves Ral–GDS and PI3K[J]. Oncogene, 2002, 21(6): 937-946.
doi: 10.1038/sj.onc.1205144
|
26 |
GAULT C R, EBLEN S T, NEUMANN C A, et al. Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1-dependent manner[J]. J Biol Chem, 2012, 287(38): 31794-31803.
doi: 10.1074/jbc.M112.385765
|
27 |
SALIAKOURA M, ROSSI SEBASTIANO M, POZZA- TO C, et al. PLCγ1 suppression promotes the adaptation of KRAS-mutant lung adenocarcinomas to hypoxia[J]. Nat Cell Biol, 2020, 22(11): 1382-1395.
doi: 10.1038/s41556-020-00592-8
|
28 |
WILLUMSEN B M, CHRISTENSEN A, HUBBERT N L, et al. The p21 ras C-terminus is required for transformation and membrane association[J]. Nature, 1984, 310(5978): 583-586.
doi: 10.1038/310583a0
|
29 |
WRIGHT L P, PHILIPS M R . Thematic review series:lipid posttranslational modifications CAAX modification and membrane targeting of Ras[J]. J Lipid Res, 2006, 47(5): 883-891.
doi: 10.1194/jlr.R600004-JLR200
|
30 |
SCHMIDT W K, TAM A, FUJIMURA-KAMADA K, et al. Endoplasmic reticulum membrane localization of Rce1p and Ste24p,yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage[J]. Proc Natl Acad Sci USA, 1998, 95(19): 11175-11180.
doi: 10.1073/pnas.95.19.11175
|
31 |
WHYTE D B, KIRSCHMEIER P, HOCKENBERRY T N, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors[J]. J Biol Chem, 1997, 272(22): 14459-14464.
doi: 10.1074/jbc.272.22.14459
|
32 |
HANCOCK J F, PATERSON H, MARSHALL C J . A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane[J]. Cell, 1990, 63(1): 133-139.
doi: 10.1016/0092-8674(90)90294-o
|
33 |
GOODWIN J S, DRAKE K R, ROGERS C, et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway[J]. J Cell Biol, 2005, 170(2): 261-272.
doi: 10.1083/jcb.200502063
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|