Please wait a minute...
浙江大学学报(医学版)  2021, Vol. 50 Issue (1): 17-22    DOI: 10.3724/zdxbyxb-2021-0054
专题报道     
RAS基因与脂代谢在恶性肿瘤中的相互调控
张明佺(),潘俊辰,黄蓬()
中山大学肿瘤防治中心,广东 广州 510060
Interaction between RAS gene and lipid metabolism in cancer
ZHANG Mingquan(),PAN Junchen,HUANG Peng()
Cancer Center,Sun Yat-Sen University,Guangzhou 510060,China
 全文: PDF(3281 KB)   HTML( 24 )
摘要:

RAS基因是恶性肿瘤中常见的驱动基因,在多种恶性肿瘤中高频率突变并异常活化,是驱动肿瘤发生发展的重要因素。代谢重编程作为恶性肿瘤重要特征之一,是抗肿瘤治疗的关键靶点。 RAS基因可通过蛋白激酶B/哺乳动物雷帕霉素靶蛋白复合物1信号轴或其他多条信号通路调控脂代谢,如脂质合成途径和降解途径等。同样,脂代谢也能修饰并激活RAS蛋白及其下游信号通路。因此,本文概述了现阶段脂代谢与 RAS之间相互调控的研究,旨在为靶向脂代谢在 RAS驱动型肿瘤的临床应用提供思路。

关键词: RAS基因脂代谢肿瘤治疗综述    
Abstract:

The RAS gene is frequently mutated and abnormally activated in many cancers,and plays an important role in cancer development. Metabolic reprogramming occurs in malignant tumors,which can be one of the key targets for anti-tumor therapy. RAS gene can regulate lipid metabolism through AKT-mTORC1 single axis or multiple pathways,such as lipid synthesis pathways and degradation pathways. Similarly,lipid metabolism can also modify and activate RAS protein and its downstream signaling pathways. This article overviews the current research progress on the interaction between lipid metabolism and RAS,to provide insight in therapeutic strategies of lipid metabolism for RAS-driven tumors.

Key words: RAS gene    Lipid metabolism    Tumor    Therapy    Review
收稿日期: 2020-12-14 出版日期: 2021-05-14
CLC:  R730.23  
基金资助: 中山大学国家自然科学基金重大项目培育专项
通讯作者: 黄蓬     E-mail: zhangmq@sysucc.org.cn;huangpeng@sysucc.org.cn
作者简介: 张明佺,博士研究生,主要从事肿瘤代谢及干预研究;E-mail:zhangmq@sysucc.org.cn;https://orcid.org/0000-0002-1853-935X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张明佺
潘俊辰
黄蓬

引用本文:

张明佺,潘俊辰,黄蓬. RAS基因与脂代谢在恶性肿瘤中的相互调控[J]. 浙江大学学报(医学版), 2021, 50(1): 17-22.

ZHANG Mingquan,PAN Junchen,HUANG Peng. Interaction between RAS gene and lipid metabolism in cancer. J Zhejiang Univ (Med Sci), 2021, 50(1): 17-22.

链接本文:

http://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0054        http://www.zjujournals.com/med/CN/Y2021/V50/I1/17

图 1  RAS的分子开关功能 RAS具有分子开关的作用:其与鸟苷三磷酸(GTP)结合时被激活,呈“开启”状态;当GTP被水解时RAS失活,呈“关闭”状态. 该过程受鸟嘌呤核苷酸交换因子(GEF)或GTP酶激活蛋白(GAP)的调控:GEF刺激鸟苷二磷酸(GDP)与GTP交换,而GAP促进GTP水解. 磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)信号轴和RAF/丝裂原激活的蛋白激酶激酶(MEK)/胞外信号调节激酶(ERK)信号轴是RAS的主要下游信号通路,调控多种代谢过程,包括糖酵解、三羧酸循环及脂代谢等. PIP3:3,4,5-三磷酸磷脂酰肌醇;mTOR:哺乳动物雷帕霉素靶蛋白.
图 2  RAS调控脂代谢的主要途径 激活状态的RAS主要通过其下游信号通路磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)和RAF/丝裂原激活的蛋白激酶激酶(MEK)/胞外信号调节激酶(ERK)调控细胞代谢. 被激活的哺乳动物雷帕霉素靶蛋白复合物(mTORC)1能够促进成熟的固醇调节元件结合蛋白(mSREBP)在细胞核中累积从而引导脂质合成. P:磷酸化;PIP2:4,5-二磷酸磷脂酰肌醇;PIP3:3,4,5-三磷酸磷脂酰肌醇;PTEN:10号染色体缺失磷酸酶及张力蛋白同源物;PDK:丙酮酸脱氢酶激酶;TSC:结节性硬化症蛋白;Rheb:RAS蛋白脑组织同源类似物;GF:生长因子;ACAT:乙酰辅酶A乙酰转移酶;HMGCR:3-羟基-3-甲基戊二酰辅酶A还原酶;FASN:脂肪酸合酶;SCD:硬脂酰辅酶A去饱和酶;OMe:甲氧基.
图 3  脂质对RAS活性的调控及干预策略 法尼基转移酶(FTase)催化法尼基类异戊二烯与RAS蛋白羧基端的CAAX基序的半胱氨酸结合,随后RAS转换酶1(RCE1)切去AAX氨基酸,而异戊二烯半胱氨酸羧基甲基转移酶(ICMT)将羧基端法尼基化半胱氨酸的羧基甲基化,最终生成具有疏水性的尾巴. 该疏水区域使RAS蛋白易于锚定在细胞膜从而促使RAS活化. 法尼基转移酶抑制剂(FTI)通过阻断RAS蛋白的法尼基类异戊二烯修饰而抑制RAS的活性. OMe:甲氧基.
1 CANON J, REX K, SAIKI A Y, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
doi: 10.1038/s41586-019-1694-1
2 SPIEGEL J, CROMM P M, ZIMMERMANN G, et al. Small-molecule modulation of Ras signaling[J]. Nat Chem Biol, 2014, 10(8): 613-622.
doi: 10.1038/nchembio.1560
3 PAPKE B, DER C J . Drugging RAS:know the enemy[J]. Science, 2017, 355(6330): 1158-1163.
doi: 10.1126/science.aam7622
4 HANAHAN D, WEINBERG R A . Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013
5 COX A D, FESIK S W, KIMMELMAN A C, et al. Drugging the undruggable RAS:mission possible?[J]. Nat Rev Drug Discov, 2014, 13(11): 828-851.
doi: 10.1038/nrd4389
6 WATERS A M, DER C J . KRAS:the critical driver and therapeutic target for pancreatic cancer[J]. Cold Spring Harb Perspect Med, 2018, 8(9): a031435.
doi: 10.1101/cshperspect.a031435
7 SNAEBJORNSSON M T, JANAKI-RAMAN S, SCHULZE A . Greasing the wheels of the cancer machine:the role of lipid metabolism in cancer[J]. Cell Metab, 2020, 31(1): 62-76.
doi: 10.1016/j.cmet.2019.11.010
8 R?HRIG F, SCHULZE A . The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16(11): 732-749.
doi: 10.1038/nrc.2016.89
9 MEDES G,THOMAS A,WEINHOUSE S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro[J]. Cancer Res,1953,13:27–29 .
10 BROWN M S, GOLDSTEIN J L . A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 232(4746): 34-47.
doi: 10.1126/science.3513311
11 KAZANTZIS M, STAHL A . Fatty acid transport proteins,implications in physiology and disease[J]. BioChim Biophysica Acta, 2012, 1821(5): 852-857.
doi: 10.1016/j.bbalip.2011.09.010
12 CAMARDA R, ZHOU A Y, KOHNZ R A, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer[J]. Nat Med, 2016, 22(4): 427-432.
doi: 10.1038/nm.4055
13 LIN H, PATEL S, AFFLECK V S, et al. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells[J]. Neuro Oncology, 2017, 19(1): 43-54.
doi: 10.1093/neuonc/now128
14 HORTON J D, SHAH N A, WARRINGTON J A, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci USA, 2003, 100(21): 12027-12032.
doi: 10.1073/pnas.1534923100
15 GONZáLEZ A, HALL M N, LIN S C, et al. AMPK and TOR:the yin and yang of cellular nutrient sensing and growth control[J]. Cell Metab, 2020, 31(3): 472-492.
doi: 10.1016/j.cmet.2020.01.015
16 RICOULT S J H, YECIES J L, BEN-SAHRA I, et al. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP[J]. Oncogene, 2016, 35(10): 1250-1260.
doi: 10.1038/onc.2015.179
17 KAMPHORST J J, CROSS J R, FAN J, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids[J]. Proc Natl Acad Sci USA, 2013, 110(22): 8882-8887.
doi: 10.1073/pnas.1307237110
18 LIANG C, QIN Y, ZHANG B, et al. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma[J]. BioChim Biophysica Acta, 2016, 1866(2): 177-188.
doi: 10.1016/j.bbcan.2016.09.001
19 CAO J Y, DIXON S J . Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11-12): 2195-2209.
doi: 10.1007/s00018-016-2194-1
20 DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
doi: 10.1016/j.cell.2012.03.042
21 YANG W S, STOCKWELL B R . Ferroptosis:death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176.
doi: 10.1016/j.tcb.2015.10.014
22 ZHENG J, CONRAD M . The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937.
doi: 10.1016/j.cmet.2020.10.011
23 SHIOZAKI A, IITAKA D, ICHIKAWA D, et al. xCT,component of cysteine/glutamate transporter,as an independent prognostic factor in human esophageal squamous cell carcinoma[J]. J Gastroenterol, 2014, 49(5): 853-863.
doi: 10.1007/s00535-013-0847-5
24 LUCAS L, DEL PESO L, RODRíGUEZ P, et al. Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor[J]. Oncogene, 2000, 19(3): 431-437.
doi: 10.1038/sj.onc.1203323
25 RAMíREZ DE MOLINA A, PENALVA V, LUCAS L, et al. Regulation of choline kinase activity by Ras proteins involves Ral–GDS and PI3K[J]. Oncogene, 2002, 21(6): 937-946.
doi: 10.1038/sj.onc.1205144
26 GAULT C R, EBLEN S T, NEUMANN C A, et al. Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1-dependent manner[J]. J Biol Chem, 2012, 287(38): 31794-31803.
doi: 10.1074/jbc.M112.385765
27 SALIAKOURA M, ROSSI SEBASTIANO M, POZZA- TO C, et al. PLCγ1 suppression promotes the adaptation of KRAS-mutant lung adenocarcinomas to hypoxia[J]. Nat Cell Biol, 2020, 22(11): 1382-1395.
doi: 10.1038/s41556-020-00592-8
28 WILLUMSEN B M, CHRISTENSEN A, HUBBERT N L, et al. The p21 ras C-terminus is required for transformation and membrane association[J]. Nature, 1984, 310(5978): 583-586.
doi: 10.1038/310583a0
29 WRIGHT L P, PHILIPS M R . Thematic review series:lipid posttranslational modifications CAAX modification and membrane targeting of Ras[J]. J Lipid Res, 2006, 47(5): 883-891.
doi: 10.1194/jlr.R600004-JLR200
30 SCHMIDT W K, TAM A, FUJIMURA-KAMADA K, et al. Endoplasmic reticulum membrane localization of Rce1p and Ste24p,yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage[J]. Proc Natl Acad Sci USA, 1998, 95(19): 11175-11180.
doi: 10.1073/pnas.95.19.11175
31 WHYTE D B, KIRSCHMEIER P, HOCKENBERRY T N, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors[J]. J Biol Chem, 1997, 272(22): 14459-14464.
doi: 10.1074/jbc.272.22.14459
32 HANCOCK J F, PATERSON H, MARSHALL C J . A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane[J]. Cell, 1990, 63(1): 133-139.
doi: 10.1016/0092-8674(90)90294-o
33 GOODWIN J S, DRAKE K R, ROGERS C, et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway[J]. J Cell Biol, 2005, 170(2): 261-272.
doi: 10.1083/jcb.200502063
[1] 邵一鸣,苏力德,郝睿,王茜茜,那仁满都拉. 乙型肝炎病毒诱发肝细胞癌分子机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 113-122.
[2] 韩恒毅,冯帆,李海涛. 表观遗传与肿瘤代谢研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 1-16.
[3] 陈菲,虞敏,钟永红,华雯,黄华琼. 中性粒细胞在哮喘中的地位和作用[J]. 浙江大学学报(医学版), 2021, 50(1): 123-130.
[4] 颜京,张婷婷,赵葵. 核医学分子影像探针应用于神经内分泌肿瘤的研究进展[J]. 浙江大学学报(医学版), 2021, 50(1): 131-137.
[5] 胡鑫暘,金洪传,朱丽媛. 谷氨酰胺代谢途径在肿瘤化疗耐药中的功能机制[J]. 浙江大学学报(医学版), 2021, 50(1): 32-40.
[6] 孟颖,王启扉,吕志民. 胆固醇代谢与肿瘤[J]. 浙江大学学报(医学版), 2021, 50(1): 23-31.
[7] 付媛媛,姜晶鑫,陈述政,邱福铭. T1期乳腺癌患者发生同侧腋窝淋巴结转移风险列线图的建立[J]. 浙江大学学报(医学版), 2021, 50(1): 81-89.
[8] 楼招欢,赵华军,吕圭源. “肺与大肠相表里”的黏膜免疫调节机制及中药干预作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 665-678.
[9] 杨泽然,张欣,马杰,金丽,何徐军. 大肠癌患者肿瘤相关血管中胰岛素受体表达及其与肿瘤组织病理学特征的关系[J]. 浙江大学学报(医学版), 2020, 49(6): 725-731.
[10] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[11] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[12] 刘云,李凯凯,吴娟,栗河舟,耿笑端,谷雅川. 先天性心脏病在肛门直肠畸形患儿中的发生情况及其对治疗的影响[J]. 浙江大学学报(医学版), 2020, 49(5): 597-602.
[13] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[14] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[15] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.