Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (3): 315-323    DOI: 10.3785/j.issn.1008-9292.2020.05.01
2019冠状病毒病     
两种严重急性呼吸综合征冠状病毒S蛋白结构特征及抗原表位比较
伦永志*(),刘奔,董雯,孙杰,潘凌鸿
莆田学院药学与医学技术学院医学微生态学福建省高校重点实验室, 福建 莆田 351100
Comparative analysis of structural characteristics and epitopes in S proteins between SARS-CoV-2 and SARS-CoV
LUN Yongzhi*(),LIU Ben,DONG Wen,SUN Jie,PAN Linghong
Key Laboratory of Medical Microecology(Putian University), Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China
 全文: PDF(15104 KB)   HTML( 12 )
摘要:

目的: 通过严重急性呼吸综合征冠状病毒(SARS-CoV)-2与SARS-CoV S蛋白结构特征及抗原表位的比较分析,从分子水平为SARS-CoV-2致病机制研究提供数据支持,并为疫苗、抗体及药物研发寻找合适的候选靶点。方法: 利用生物信息学方法和工具,基于S蛋白参考序列进行理化性质、疏水性、信号肽、跨膜区、结构域、二级结构、三级结构分析及抗原表位预测,同时对受体血管紧张素转换酶2(ACE2)、C型凝集素(CLEC4M)的组织表达及关联通路、途径进行分析。结果: SARS-CoV-2、SARS-CoV S蛋白氨基酸序列一致性为75.80%,两者结构特征具有较高一致性,但SARS-CoV-2高级结构特征不如SARS-CoV明显。受体ACE2、CLEC4M在消化系统及心脏、肾脏、肺、胎盘中均有表达,主要关联的肾素-血管紧张素系统、蛋白质消化吸收通路及血管紧张素前体转化、G蛋白偶联受体(GPCR)配体结合途径与2019冠状病毒病典型症状相关。分析获得S蛋白三对高度或完全同源的抗原表位,即SARS-CoV-2 S蛋白第600~605位氨基酸残基与SARS-CoV第586~591位高度一致,SARS-CoV-2 S蛋白第695~703位、第888~896位氨基酸残基分别与SARS-CoV第677~685位、第870~878位高度或完全一致。结论: SARS-CoV-2与SARS-CoV S蛋白结构上的相似性决定了两者具有相近的感染模式和临床表现。筛选获得的高可信度的SARS-CoV-2候选抗原表位可为病毒诊断和疫苗研制提供参考。

关键词: 严重急性呼吸综合征冠状病毒2S蛋白结构特征抗原表位    
Abstract:

Objective: To provide data support for the study of pathogenic mechanism of SARS-CoV-2 at the molecular level, and provide suitable candidate targets for vaccine, antibody and drug research and development through comparative analysis for structural characteristics and epitopes of S protein of SARS-CoV-2 and SARS-CoV. Methods: Based on the reference sequences of S protein, physical and chemical properties, hydrophobicity, signal peptide, transmembrane region, domain, secondary structure, tertiary structure analysis and antigenic epitopes prediction were carried out. Meanwhile, the tissue expression, related pathways and reactome pathways of angiotensis Ⅰ converting enzyme 2 (ACE2) and C-type lectin domain family 4 member M (CLEC4M) receptors were analyzed. Results: The amino acid sequence of S protein of SARS-CoV-2 and SARS-CoV has a 75.80% consistency. The structural characteristics of the two coronaviruses are highly consistent, but the secondary structure and tertiary structure of SARS-CoV-2 is not as obvious as SARS-CoV. ACE2 and CLEC4M are expressed in alimentary system, heart, kidney, lung and placenta. The main related the pathways of renin-angiotensin system, protein digestion and absorption pathway, and the reactome pathways of metabolism of angiotensinogen to angiotensins, GPCR ligand binding, are related to typical symptoms of coronavirus disease 2019 induced by SARS-CoV-2. Three pairs of highly or completely homologous epitopes of S protein were obtained. The 600-605, 695-703 and 888-896 amino acid residues in SARS-CoV-2 were highly homologous with 586-591, 677-685 and 870-878 amino acid residues in SARS-CoV, respectively. Conclusions: The similarity of S protein of SARS-CoV-2 and SARS-CoV determines that they have similar infection patterns and clinical manifestations. The candidate epitopes with high reliability can provide reference for virus diagnosis and vaccine development.

Key words: Severe acute respiratory syndrome coronavirus 2    S protein    Structural characteristic    Epitope
收稿日期: 2020-04-16 出版日期: 2020-06-10
CLC:  R373.1  
基金资助: 福建省高等学校新世纪优秀人才项目;福建省卫生健康科研人才培养项目(2019-CX-42)
通讯作者: 伦永志     E-mail: lunyz@163.com
作者简介: 伦永志(1973-), 男, 博士, 教授, 硕士生导师, 主要从事感染性疾病的分子生物学研究; E-mail:lunyz@163.com; https://orcid.org/0000-0002-7947-9274
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
伦永志
刘奔
董雯
孙杰
潘凌鸿

引用本文:

伦永志,刘奔,董雯,孙杰,潘凌鸿. 两种严重急性呼吸综合征冠状病毒S蛋白结构特征及抗原表位比较[J]. 浙江大学学报(医学版), 2020, 49(3): 315-323.

LUN Yongzhi,LIU Ben,DONG Wen,SUN Jie,PAN Linghong. Comparative analysis of structural characteristics and epitopes in S proteins between SARS-CoV-2 and SARS-CoV. J Zhejiang Univ (Med Sci), 2020, 49(3): 315-323.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.05.01        http://www.zjujournals.com/med/CN/Y2020/V49/I3/315

冠状病毒 相对分子质量 理论等电点 不稳定系数 平均亲水值
SARS-CoV:严重急性呼吸综合征冠状病毒.
SARS-CoV-2 141 179 6.24 33.01 -0.079
SARS-CoV 139 109 5.56 32.42 -0.043
表 1  SARS-CoV-2与SARS-CoV S蛋白理化性质比较
图 1  SARS-CoV-2与SARS-CoV S蛋白疏水性比较
冠状病毒 信号肽 细胞外区 跨膜区 细胞质区
SARS-CoV:严重急性呼吸综合征冠状病毒.
SARS-CoV-2 1~15 16~1213 1214~1236 1237~1273
SARS-CoV 1~13 14~1195 1196~1216 1217~1255
表 2  SARS-CoV-2与SARS-CoV S蛋白结构功能域比较
图 2  SARS-CoV-2与SARS-CoV S蛋白结构特征比较
图 3  SARS-CoV-2与SARS-CoV S蛋白三级结构比较
图 4  SARS-CoV-2与SARS-CoV S蛋白氨基酸序列同源性比对
图 5  血管紧张素转换酶2和C型凝集素蛋白类受体组织表达水平
图 6  ACE2、CLEC4M、DPP4互作蛋白关联通路和途径
冠状病毒 起止位置 氨基酸序列
*高度同源抗原表位序列.SARS-CoV:严重急性呼吸综合征冠状病毒.
SARS-CoV-2 73~78 TNGTKR
250~260 TPGDSSSGWTA
525~529 CGPKK
600~605 PGTNTS*
676~683 TQTNSPRR
807~814 PDPSKPSK
SARS-CoV 25~33 VQAPNYTQH
396~400 QIAPG
428~435 IDATSTGN
560~566 DSVRDPK
586~591 PGTNAS*
791~794 PLKP
表 3  SARS-CoV-2与SARS-CoV S蛋白B细胞抗原表位比较结果
冠状病毒 起止位置 氨基酸序列
*高度同源抗原表位序列.SARS-CoV:严重急性呼吸综合征冠状病毒.
SARS-CoV-2 695~703 YTMSLGAEN*
888~896 FGAGAALQI*
SARS-CoV 677~685 YTMSLGADS*
870~878 FGAGAALQI*
表 4  SARS-CoV-2与SARS-CoV S蛋白Th抗原表位比较结果
图 7  SARS-CoV-2与SARS-CoV S蛋白抗原表位空间定位比较结果
1 HUI D , ZUMLA A . Severe acute respiratory syndrome:historical, epidemiologic, and clinical features[J]. Infect Dis Clin North Am, 2019, 33 (4): 869- 889
doi: 10.1016/j.idc.2019.07.001
2 赵琪, 饶子和 . 冠状病毒蛋白结构基因组研究进展[J]. 生物物理学报, 2010, 26 (1): 14- 25
ZHAO Qi , RAO Zihe . Progress of structural genomics study on coronaviruse[J]. Acta Biophysica Sinica, 2010, 26 (1): 14- 25
3 沈媚, 陈冰清, 于瑞嵩 et al. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017, 44 (10): 2452- 2462
SHEN Mei , CHEN Bingqing , YU Ruisong et al. Structure and function of coronaviral S proteins and their receptors[J]. Microbiology China, 2017, 44 (10): 2452- 2462
doi: 10.13344/j.microbiol.china.170256
4 LI F . Receptor recognition mechanisms of coronaviruses:a decade of structural studies[J]. J Virol, 2015, 89 (4): 1954- 1964
doi: 10.1128/JVI.02615-14
5 JEFFERS S A , TUSELL S M , GILLIM-ROSS L et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15748- 15753
doi: 10.1073/pnas.0403812101
6 LARKIN M A , BLACKSHIELDS G , BROWN N P et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23 (21): 2947- 2948
doi: 10.1093/bioinformatics/btm404
7 ETERSEN T N , BRUNAK S , VON HEIJNE G et al. SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nat Methods, 2011, 8 (10): 785- 786
doi: 10.1038/nmeth.1701
8 KROGH A , LARSSON B , VON HEIJNE G et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. J Mol Biol, 2001, 305 (3): 567- 580
doi: 10.1006/jmbi.2000.4315
9 MITCHELL A L , ATTWOOD T K , BABBITT P C et al. InterPro in 2019:improving coverage, classification and access to protein sequence annotations[J]. Nucleic Acids Res, 2019, 47 (D1): D351- D360
doi: 10.1093/nar/gky1100
10 EL-GEBALI S , MISTRY J , BATEMAN A et al. The Pfam protein families database in 2019[J]. Nucleic Acids Res, 2019, 47 (D1): D427- D432
doi: 10.1093/nar/gky995
11 BERMAN H M , WESTBROOK J , FENG Z et al. The protein data bank[J]. Nucleic Acids Res, 2000, 28 (1): 235- 242
doi: 10.1093/nar/28.1.235
12 WRAPP D , WANG N , CORBETT K S et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367 (6483): 1260- 1263
doi: 10.1126/science.abb2507
13 GUI M , SONG W , ZHOU H et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding[J]. Cell Res, 2017, 27 (1): 119- 129
doi: 10.1038/cr.2016.152
14 SZKLARCZYK D , MORRIS J H , COOK H et al. The STRING database in 2017:quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45 (D1): D362- D368
doi: 10.1093/nar/gkw937
15 LARSEN J E , LUND O , NIELSEN M . Improved method for predicting linear B-cell epitopes[J]. Immunome Res, 2006, 2 2
doi: 10.1186/1745-7580-2-2
16 JENSEN K K , ANDREATTA M , MARCATILI P et al. Improved methods for predicting peptide binding affinity to MHC class II molecules[J]. Immunology, 2018, 154 (3): 394- 406
doi: 10.1111/imm.12889
17 COUGHLIN M M , PRABHAKAR B S . Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus:target, mechanism of action, and therapeutic potential[J]. Rev Med Virol, 2012, 22 (1): 2- 17
doi: 10.1002/rmv.706
18 MILLET J K , WHITTAKER G R . Host cell proteases:critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202 120- 134
doi: 10.1016/j.virusres.2014.11.021
19 KAWASE M , SHIRATO K , MATSUYAMA S et al. Protease-mediated entry via the endosome of human coronavirus 229E[J]. J Virol, 2009, 83 (2): 712- 721
doi: 10.1128/JVI.01933-08
20 SIMMONS G , GOSALIA D N , RENNEKAMPA J et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry[J]. Proc Natl Acad Sci U S A, 2005, 102 (33): 11876- 11881
doi: 10.1073/pnas.0505577102
21 XU X , CHEN P , WANG J et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020, 63 (3): 457- 460
doi: 10.1007/s11427-020-1637-5
22 FREUND N T , ROITBURD-BERMAN A , SUI J et al. Reconstitution of the receptor-binding motif of the SARS coronavirus[J]. Protein Eng Des Sel, 2015, 28 (12): 567- 575
doi: 10.1093/protein/gzv052
23 WALLS A C , TORTORICI M A , SNIJDER J et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion[J]. Proc Natl Acad Sci U S A, 2017, 114 (42): 11157- 11162
doi: 10.1073/pnas.1708727114
24 WAN Y , SHANG J , GRAHAM R et al. Receptor recognition by the novel coronavirus from Wuhan:an analysis based on decade-long structural studies of SARS coronavirus[J]. J Virol, 2020, 94 (7):
doi: 10.1128/JVI.00127-20
25 PERLOT T , PENNINGER J M . ACE2-from the renin-angiotensin system to gut microbiota and malnutrition[J]. Microbes Infect, 2013, 15 (13): 866- 873
doi: 10.1016/j.micinf.2013.08.003
26 中国医师协会老年医学科医师分会, 国家老年医学中心 . 老年新型冠状病毒肺炎诊断和治疗专家共识[J]. 中国医师杂志, 2020, 22 (2): 161- 165
Geriatrics Medical Doctor Branch of the Chinese Medical Doctor Association , National Center of Gerontology . Expert consensus on the diagnosis and treatment of COVID-19 in the elderly[J]. Journal of Chinese Physician, 2020, 22 (2): 161- 165
doi: 10.3760/cma.j.issn.1008-1372.2020.02.001
27 PATEL S , RAUF A , KHAN H et al. Renin-angiotensin-aldosterone (RAAS):The ubiquitous system for homeostasis and pathologies[J]. Biomed Pharmacother, 2017, 94 317- 325
doi: 10.1016/j.biopha.2017.07.091
28 HAAK A J , DUCHARME M T , DIAZ ESPINOSA A M et al. Targeting GPCR signaling for idiopathic pulmonary fibrosis therapies[J]. Trends Pharmacol Sci, 2020, 41 (3): 172- 182
doi: 10.1016/j.tips.2019.12.008
[1] 何叶艳, 郑婵颖. 三种人类高致病性冠状病毒的增殖和传播机制研究进展[J]. 浙江大学学报(医学版), 2020, 49(3): 324-339.
[2] 徐亦鸣, 吕丹丹, 应可净. 2019冠状病毒病(COVID-19)患者出凝血功能障碍的研究进展[J]. 浙江大学学报(医学版), 2020, 49(3): 340-346.
[3] 胡燕, 李晓峰, 龚卫月. 2019冠状病毒病(COVID-19)危重型患者的营养支持治疗[J]. 浙江大学学报(医学版), 2020, 49(3): 347-355.
[4] 王锦程,刘锦鹏,王园园,刘伟,陈小群,孙超,沈晓勇,汪启东,吴亚平,梁文杰,阮凌翔. 2019冠状病毒病(COVID-19)患者胸部CT影像学动态变化[J]. 浙江大学学报(医学版), 2020, 49(2): 191-197.
[5] 张小燕, 孙伟, 尚世强, 毛建华, 傅君芬, 舒强, 江克文. 2019冠状病毒病(COVID-19)疫情期生物样本保藏生物安全防护原则及建议[J]. 浙江大学学报(医学版), 2020, 49(2): 170-177.
[6] 曹盛力,冯沛华,时朋朋. 修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J]. 浙江大学学报(医学版), 2020, 49(2): 178-184.
[7] 陈军,刘丹萍,刘莉,刘萍,徐庆年,夏露,凌云,黄丹,宋树丽,张丹丹,钱志平,李涛,沈银忠,卢洪洲. 硫酸羟氯喹治疗2019冠状病毒病(COVID-19)普通型患者的初步研究[J]. 浙江大学学报(医学版), 2020, 49(2): 215-219.
[8] 陈志敏,傅君芬,舒强,汪伟,陈英虎,华春珍,李甫棒,林茹,唐兰芳,汪天林,王颖硕,徐玮泽,杨子浩,叶盛,袁天明,张晨美,张园园. 儿童2019冠状病毒病(COVID-19)诊疗指南(第二版)[J]. 浙江大学学报(医学版), 2020, 49(2): 139-146.
[9] 徐凯进,蔡洪流,沈毅弘,倪勤,陈瑜,胡少华,李剑平,王华芬,俞亮,黄河,裘云庆,魏国庆,方强,周建英,盛吉芳,梁廷波,李兰娟. 2019冠状病毒病(COVID-19)诊疗浙江经验[J]. 浙江大学学报(医学版), 2020, 49(2): 147-157.
[10] 姜赛平,李璐,茹仁萍,张春红,饶跃峰,林彬,王融溶,陈娜,王小娟,蔡洪流,盛吉芳,周建英,卢晓阳,裘云庆. 2019冠状病毒病(COVID-19)重型、危重型患者用药管理经验[J]. 浙江大学学报(医学版), 2020, 49(2): 158-169.
[11] 李鑫,代甜,王虹,石军年,袁薇,栗静,陈利军,张天明,张珊珊,孔焱,岳宁,时慧,何玉苹,胡惠芳,柳芙蓉,杨彩霞. 2019冠状病毒病(COVID-19)疑似患者合并焦虑和抑郁的临床分析[J]. 浙江大学学报(医学版), 2020, 49(2): 203-208.
[12] 骆嵩,杨丽娟,王春,刘传苗,李殿明. 血浆置换和托珠单抗治疗六例2019冠状病毒病(COVID-19)重型患者临床分析[J]. 浙江大学学报(医学版), 2020, 49(2): 227-231.
[13] 洪东升,倪剑,单文雅,李璐,胡希,羊红玉,赵青威,张幸国. 基于监测数据的药物不良反应快速识别及R语言实现[J]. 浙江大学学报(医学版), 2020, 49(2): 253-259.
[14] 钟琦,李志,沈晓勇,徐凯进,沈毅弘,方强,陈峰,梁廷波. 2019冠状病毒病(COVID-19)不同临床分型患者胸部CT影像学特征[J]. 浙江大学学报(医学版), 2020, 49(2): 198-202.
[15] 康仙慧,张荣,何慧梁,姚永兴,郑跃英,温小红,祝胜美. 一例妊娠合并2019冠状病毒病(COVID-19)患者的剖宫产麻醉管理[J]. 浙江大学学报(医学版), 2020, 49(2): 249-252.