Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (6): 657-667    DOI: 10.3785/j.issn.1008-9292.2019.12.11
原著     
基于聚天冬氨酸骨架的药物/基因共运输载体的制备及细胞生物学特性
沈洁1,2(),王启闻3,高东若1,吕媛媛1,汤谷平2,*()
1. 浙江大学城市学院医学院, 浙江 杭州 310015
2. 浙江大学化学系, 浙江 杭州 310028
3. 浙江大学医学院附属第一医院心血管内科, 浙江 杭州 310003
Synthesis and cell biological properties of polyaspartic acid drug/gene vector
SHEN Jie1,2(),WANG Qiwen3,GAO Dongruo1,LYU Yuanyuan1,TANG Guping2,*()
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China
2. Department of Chemistry, Zhejiang University, Hangzhou 310028, China
3. Department of Cardiovascular Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(7966 KB)   HTML( 6 )
摘要:

目的: 以聚天冬氨酸作为主链,接枝胺基侧链和烷基侧链制备药物/基因共运输载体,考察不同侧链接枝率形成的纳米粒载体的载药及载基因性能,并筛选出性能较优的载体。方法: 以D,L-天冬氨酸为单体,通过聚合反应合成聚天冬氨酸,然后以不同比例的N,N-二甲基亚二丙基三胺、3,3'-二氨基二丙胺和十二胺/十六胺/十八胺进行开环接枝,得到两亲性聚天冬氨酸-3,3'-二氨基二丙胺-N,N-二甲基亚二丙基三胺-烷基胺(PEEC)材料。采用氢核磁共振确认PEEC结构,用动态光散射法测定纳米粒胶束的粒径和表面电位,用芘荧光探针法测定临界胶束浓度,用琼脂糖凝胶电泳表征RNA阻滞能力,考查载药胶束的释放行为并且在细胞层面上研究材料的细胞毒性、细胞摄取和基因沉默效率。结果: 成功合成了不同接枝率的PEEC材料,纳米粒胶束的粒径为250~350 nm,表面电位为27~45 mV,拥有较小的临界胶束浓度值,RNA阻滞的质量比约为0.8:1;PEEC胶束有一定的细胞毒性,其载药能力和基因绑定能力良好,其中PEEC16-2在细胞水平上表现出较高的基因沉默效率。结论: PEEC具有共载药物/基因的能力,其中PEEC16-2胶束具有良好的药物包载和基因运输能力。

关键词: 天冬氨酸药物载体基因治疗纳米粒子肿瘤    
Abstract:

Objective: Taking polysuccinimide as the main chain, amine side chain and alkyl side chain were grafted to prepare the drug/gene co-delivery vector. The property of the polymers with various side links were investigated to select an optimal vector. Methods: Poly-D, L-polysuccinimide was synthesized by polymerization reaction of D, L-aspartic acid as monomer. Therefore, N, N-dimethylenedipropyl-triamine and 3, 3'-diaminodipropylamine were grafted with dodecylamine/adecylamine/octadecylamine at different proportions by ring-opening reaction to obtain amphiphilic PEECs. The structure of the material was confirmed by 1H NMR; the particle size and surface potential of the micelles were measured by dynamic light scattering; the critical micelle concentration (CMC) was determined by pyrene fluorescent probe; the RNA blocking ability was characterized by agarose gel electrophoresis; the release behavior of the PEECs was examined and the cytotoxicity, cellular uptake and gene silencing efficiency of the PEECs were studied at the cellular level. Results: A series of PEECs with different grafting rates was successfully synthesized. The particle sizes and surface potential of the PEEC derived micelles were between 250 nm and 350 nm and 27 mV and 45 mV, respectively, with a small CMC value. The RNA binding ratio of PEECs was at a mass ratio of about 0.8:1. MTT assay demonstrated that PEEC micelles had certain cytotoxicity. PEECs had excellent micelle formation, drug-loading and gene binding abilities, particularly, PEEC16-2 showed high gene silencing efficiency at the cellular level. Conclusion: PEECs are able to co-delivery drug and gene, and PEEC16-2 micelles have the best ability of drug encapsulation and gene delivery.

Key words: Aspartic acid    Drug carriers    Genetic therapy    Nanoparticles    Neoplasms
收稿日期: 2019-01-30 出版日期: 2020-01-19
:  R943  
基金资助: 浙江大学城市学院教师科研基金(J16002);国家自然科学基金(81800442)
通讯作者: 汤谷平     E-mail: shenj@zucc.edu.cn;tangguping@zju.edu.cn
作者简介: 沈洁(1987-), 女, 博士, 讲师, 主要从事抗肿瘤基因药物纳米材料研究; E-mail:shenj@zucc.edu.cn; https://orcid.org/0000-0002-8116-0473
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈洁
王启闻
高东若
吕媛媛
汤谷平

引用本文:

沈洁,王启闻,高东若,吕媛媛,汤谷平. 基于聚天冬氨酸骨架的药物/基因共运输载体的制备及细胞生物学特性[J]. 浙江大学学报(医学版), 2019, 48(6): 657-667.

SHEN Jie,WANG Qiwen,GAO Dongruo,LYU Yuanyuan,TANG Guping. Synthesis and cell biological properties of polyaspartic acid drug/gene vector. J Zhejiang Univ (Med Sci), 2019, 48(6): 657-667.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.12.11        http://www.zjujournals.com/med/CN/Y2019/V48/I6/657

样品 聚天冬氨酸(g) 烷基胺(g) N,N-二甲基亚二丙基三胺(mL) 3,3′-二氨基二丙胺(mL)
PEEC:聚天冬氨酸-3,3′-二氨基二丙胺-N,N-二甲基亚二丙基三胺-烷基胺.
PEEC12-1 1.0 0.10 1.0 1.3
PEEC12-2 1.0 0.20 1.0 1.3
PEEC16-1 1.0 0.27 1.0 1.7
PEEC16-2 1.0 0.40 1.0 1.7
PEEC18-1 1.0 0.15 1.0 1.7
PEEC18-2 1.0 0.30 1.0 1.7
表 1  合成PEEC的投料比
图 1  PEEC的合成路线
图 2  PEEC的核磁共振氢谱
样品 x y z 烷基链接枝率(%) 粒径(nm) 表面电位(mV) 临界胶束浓度(μg/mL)
x:3,3′-二氨基二丙胺;y:N,N-二甲基亚二丙基三胺;z:烷基胺;PEEC:聚天冬氨酸-3,3′-二氨基二丙胺-N,N-二甲基亚二丙基三胺-烷基胺.
PEEC12-1 0.295 0.573 0.054 5.9 308±6 32.0±0.6 43.8
PEEC12-2 0.217 0.538 0.134 15.1 279±16 29.0±1.4 21.6
PEEC16-1 0.339 0.507 0.054 6.0 342±32 37.4±2.6 45.9
PEEC16-2 0.396 0.722 0.157 12.3 302±20 31.8±2.5 4.4
PEEC18-1 0.383 0.673 0.031 2.9 341±28 42.5±2.1 42.7
PEEC18-2 0.966 1.440 0.179 6.9 326±24 37.2±1.1 28.3
表 2  PEEC的烷基链接枝率、粒径、表面电位及临界胶束浓度
图 3  不同接枝率PEEC的临界胶束浓度
图 4  不同接枝率PEEC胶束的琼脂糖凝胶电泳图
图 5  PEEC胶束对细胞存活率的影响
图 6  PEEC16-2载药胶束的体外药物释放曲线(n=3)
图 7  PEEC16-2/siRNA复合物的细胞摄取
图 8  PEEC16-2/siGFP绿色荧光蛋白沉默结果(n=3)
图 9  PEEC16-2/DOX/siRNA的细胞摄取
1 NAKAYAMA Y . Hyperbranched polymeric "star vectors" for effective DNA or siRNA delivery[J]. Acc Chem Res, 2012, 45 (7): 994- 1004
doi: 10.1021/ar200220t
2 BAO X , WANG W , WANG C et al. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy[J]. Biomaterials, 2014, 35 (29): 8450- 8466
doi: 10.1016/j.biomaterials.2014.06.025
3 CASETTARI L , VLLASALIU D , LAM J K et al. Biomedical applications of amino acid-modified chitosans:a review[J]. Biomaterials, 2012, 33 (30): 7565- 7583
doi: 10.1016/j.biomaterials.2012.06.104
4 SONG H Q , LI R Q , DUAN S et al. Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates[J]. Nanoscale, 2015, 7 (13): 5803- 5814
doi: 10.1039/C4NR07515C
5 ZHU H , DONG C , DONG H et al. Cleavable PEGylation and hydrophobic histidylation of polylysine for siRNA delivery and tumor gene therapy[J]. ACS Appl Mater Interfaces, 2014, 6 (13): 10393- 10407
doi: 10.1021/am501928p
6 KODAMA Y , NAKAMURA T , KUROSAKI T et al. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery[J]. Eur J Pharm Biopharm, 2014, 87 (3): 472- 479
doi: 10.1016/j.ejpb.2014.04.013
7 LUO K , LI C , WANG G et al. Peptide dendrimers as efficient and biocompatible gene delivery vectors:Synthesis and in vitro characterization[J]. J Control Release, 2011, 155 (1): 77- 87
doi: 10.1016/j.jconrel.2010.10.006
8 MASTORAKOS P , KAMBHAMPATI S P , MISHRA M K et al. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells[J]. Nanoscale, 2015, 7 (9): 3845- 3856
doi: 10.1039/C4NR04284K
9 KUMAR A , YELLEPEDDI V K , VANGARA K K et al. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues[J]. J Drug Target, 2011, 19 (9): 770- 780
doi: 10.3109/1061186X.2011.568061
10 WU H M , PAN S R , CHEN M W et al. A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection[J]. Biomaterials, 2011, 32 (6): 1619- 1634
doi: 10.1016/j.biomaterials.2010.09.045
11 GIAMMONA G , CAVALLARO G , FONTANA G et al. Coupling of the antiviral agent zidovudine to polyaspartamide and in vitro drug release studies[J]. J Control Release, 1998, 54 (3): 321- 331
doi: 10.1016/S0168-3659(98)00020-0
12 MIYATA K , OBA M , NAKANISHI M et al. Polyplexes from poly(aspartamide) bearing 1, 2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity[J]. J Am Chem Soc, 2008, 130 (48): 16287- 16294
doi: 10.1021/ja804561g
13 CHENG H , LI Y Y , ZENG X et al. Protamine sulfate/poly(L-aspartic acid) polyionic complexes self-assembled via electrostatic attractions for combined delivery of drug and gene[J]. Biomaterials, 2009, 30 (6): 1246- 1253
doi: 10.1016/j.biomaterials.2008.11.002
14 WANG J L , TANG G P , SHEN J et al. A gene nanocomplex conjugated with monoclonal antibodies for targeted therapy of hepatocellular carcinoma[J]. Biomaterials, 2012, 33 (18): 4597- 4607
doi: 10.1016/j.biomaterials.2012.02.045
15 SHEN J , ZHAO D J , LI W et al. A polyethylenimine-mimetic biodegradable polycation with proper amine compositions for efficient gene delivery[J]. Biomaterials, 2013, 34 (18): 4520- 4531
doi: 10.1016/j.biomaterials.2013.02.068
16 赵丹军.聚天冬氨酸的衍生物作为基因载体的研究[D].杭州: 浙江大学, 2011.
ZHAO Danjun. Derivatives of poly(D, L-aspartic acid) used for gene delivery[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[1] 刘婧雯,杨兴莲,沈凯莉,曾玲晖,孙燕. 氯氧喹通过下调Rho/Rho激酶信号通路抑制乳腺癌细胞转移[J]. 浙江大学学报(医学版), 2019, 48(6): 631-637.
[2] 陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.
[3] 马盼盼,蔡利军,吕宾,乐敏. 探头式激光共聚焦显微内镜在胃癌及癌前病变临床诊断中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 504-510.
[4] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[5] 张丹丹,王军梅. 胎儿肝血管瘤的产前影像学诊断和管理[J]. 浙江大学学报(医学版), 2019, 48(4): 439-445.
[6] 王青梅, 徐千姿, 魏安怡, 陈世硕, 张翀, 曾玲晖. 大剂量维生素C通过减少糖酵解和蛋白质合成抑制乳腺癌细胞增殖[J]. 浙江大学学报(医学版), 2019, 48(3): 296-302.
[7] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[8] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[9] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[10] 伦永志,孙杰. 肝细胞癌患者外周血单个核细胞诊断候选基因的筛选及其调控网络分析[J]. 浙江大学学报(医学版), 2019, 48(2): 148-157.
[11] 徐阿巧,何红琴,施秋军,李芝清,张盛箭. 数字化乳腺断层融合摄影对致密型乳腺病变的诊断价值[J]. 浙江大学学报(医学版), 2019, 48(2): 186-192.
[12] 王雅琪,金静华. 巨噬细胞在颅内动脉瘤发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 204-213.
[13] 沈夏梦,吕卫国. 外泌体参与卵巢癌患者对化疗耐药的研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 116-120.
[14] 唐和孝,白玉泉,申武林,赵金平. 白介素6在肺癌中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 659-664.
[15] 沈宏,季峰. 无X射线监视内镜下消化道支架置入治疗消化道狭窄的疗效和安全性[J]. 浙江大学学报(医学版), 2018, 47(6): 643-650.