专题报道 |
|
|
|
|
单核苷酸多态性微阵列分析对智力障碍和发育迟缓的遗传学诊断价值 |
胡珺洁( ),钱叶青,孙义锡,俞佳玲,罗玉琴,董旻岳*( ) |
浙江大学医学院附属妇产科医院生殖遗传科 生殖遗传教育部重点实验室, 浙江 杭州 310006 |
|
Application of single nucleotide polymorphism microarray in clinical diagnosis of intellectual disability or retardation |
HU Junjie( ),QIAN Yeqing,SUN Yixi,YU Jialing,LUO Yuqin,DONG Minyue*( ) |
Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China |
引用本文:
胡珺洁,钱叶青,孙义锡,俞佳玲,罗玉琴,董旻岳. 单核苷酸多态性微阵列分析对智力障碍和发育迟缓的遗传学诊断价值[J]. 浙江大学学报(医学版), 2019, 48(4): 420-428.
HU Junjie,QIAN Yeqing,SUN Yixi,YU Jialing,LUO Yuqin,DONG Minyue. Application of single nucleotide polymorphism microarray in clinical diagnosis of intellectual disability or retardation. J Zhejiang Univ (Med Sci), 2019, 48(4): 420-428.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.08.12
或
http://www.zjujournals.com/med/CN/Y2019/V48/I4/420
|
1 |
裴金瑞.靶向捕获二代测序检测不明原因智力障碍/发育迟缓结果分析[D].太原: 山西医科大学, 2015. PEI Jinrui. Results analysis of targeted next generation sequencing in patients with unknown intellectual/developmental disabilities[D]. Taiyuan: Shanxi Medical University, 2015. (in Chinese)
|
2 |
马娜, 胡浩, 贾政军 et al. 罕见的4q13.1-13.3微缺失导致患者智力低下及生长发育迟缓表型[J]. 中国现代医学杂志, 2016, 26 (23): 140- 142 MA Na , HU Hao , JIA Zhengjun et al. Rare 4q13.1-13.3 microdeletion results in mental retardation and growth retardation[J]. China Journal of Modern Medicine, 2016, 26 (23): 140- 142
doi: 10.3969/j.issn.1005-8982.2016.23.030
|
3 |
GRUCHY N , DECAMP M , RICHARD N et al. Array CGH analysis in high-risk pregnancies:comparing DNA from cultured cells and cell-free fetal DNA[J]. Prenat Diagn, 2012, 32 (4): 383- 388
doi: 10.1002/pd.2861
|
4 |
D'AMOURS G , KIBAR Z , MATHONNET G et al. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype[J]. Clin Genet, 2012, 81 (2): 128- 141
doi: 10.1111/j.1399-0004.2011.01687.x
|
5 |
SHINAWI M , CHEUNG S W . The array CGH and its clinical applications[J]. Drug Discov Today, 2008, 13 (17-18): 760- 770
doi: 10.1016/j.drudis.2008.06.007
|
6 |
HOCHSTENBACH R , VAN BINSBERGEN E , ENGELEN J et al. Array analysis and karyotyping:workflow consequences based on a retrospective study of 36, 325 patients with idiopathic developmental delay in the Netherlands[J]. Eur J Med Genet, 2009, 52 (4): 161- 169
|
7 |
MANNING M , HUDGINS L , Professional Practice and Guidelines Committee . Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities[J]. Genet Med, 2010, 12 (11): 742- 745
doi: 10.1097/GIM.0b013e3181f8baad
|
8 |
KALE T , PHILIP M . An interstitial deletion at 7q33-36.1 in a patient with intellectual disability, significant language delay, and severe microcephaly[J]. Case Rep Genet, 2016, 2016:6046351
|
9 |
GUNNARSSON C , FOYN BRUUN C . Molecular characterization and clinical features of a patient with an interstitial deletion of 3p25.3-p26.1[J]. Am J Med Genet A, 2010, 152A (12): 3110- 3114
doi: 10.1002/ajmg.a.33353
|
10 |
KELLOGG G , SUM J , WALLERSTEIN R . Deletion of 3p25.3 in a patient with intellectual disability and dysmorphic features with further definition of a critical region[J]. Am J Med Genet A, 2013, 161A (6): 1405- 1408
|
11 |
CARVALHO C M , BARTNIK M , PEHLIVAN D et al. Evidence for disease penetrance relating to CNV size:Pelizaeus-Merzbacher disease and manifesting carriers with a familial 11 Mb duplication at Xq22[J]. Clin Genet, 2012, 81 (6): 532- 541
doi: 10.1111/j.1399-0004.2011.01716.x
|
12 |
BALCIUNIENE J , FENG N , IYADURAI K et al. Recurrent 10q22-q23 deletions:a genomic disorder on 10q associated with cognitive and behavioral abnormalities[J]. Am J Hum Genet, 2007, 80 (5): 938- 947
doi: 10.1086/513607
|
13 |
THEVENON J , CALLIER P , ANDRIEUX J et al. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech[J]. Eur J Hum Genet, 2013, 21 (1): 82- 88
|
14 |
PAPETTI L , SCHETTINI L , GARONE G et al. The crucial role of FBXO28 in the pathogenesis of the 1q41q42 microdeletion syndrome[J]. Am J Med Genet A, 2016, 170 (11): 3041- 3042
doi: 10.1002/ajmg.a.37753
|
15 |
AU P Y , ARGIROPOULOS B , PARBOOSINGHJ S et al. Refinement of the critical region of 1q41q42 microdeletion syndrome identifies FBXO28 as a candidate causative gene for intellectual disability and seizures[J]. Am J Med Genet A, 2014, 164A (2): 441- 448
|
16 |
CASSINA M , RIGON C , CASARIN A et al. FBXO28 is a critical gene of the 1q41q42 microdeletion syndrome[J]. Am J Med Genet A, 2015, 167 (6): 1418- 1420
doi: 10.1002/ajmg.a.37033
|
17 |
VORTKAMP A , GESSLER M , GRZESCHIK K H . GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families[J]. Nature, 1991, 352 (6335): 539- 540
doi: 10.1038/352539a0
|
18 |
BI W , SAPIR T , SHCHELOCHKOVO A et al. Increased LIS1 expression affects human and mouse brain development[J]. Nat Genet, 2009, 41 (2): 168- 177
doi: 10.1038/ng.302
|
19 |
AVELA K , AKTAN-COLLAN K , HORELLI-KUITUNEN N et al. A microduplication on chromosome 17p13.1p13.3 including the PAFAH1B1(LIS1) gene[J]. Am J Med Genet A, 2011, 155A (4): 875- 879
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|