Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (4): 390-396    DOI: 10.3785/j.issn.1008-9292.2019.08.07
专题报道     
3-羟基异戊酰基肉碱代谢异常新生儿遗传学分析
吴鼎文1(),芦斌2,杨建滨1,杨茹莱1,黄新文1,童凡1,郑静1,赵正言1,*()
1. 浙江大学医学院附属儿童医院遗传代谢科 浙江省新生儿疾病筛查中心, 浙江 杭州 310052
2. 浙江博圣生物技术股份有限公司, 浙江 杭州 310012
Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine
WU Dingwen1(),LU Bin2,YANG Jianbin1,YANG Rulai1,HUANG Xinwen1,TONG Fan1,ZHENG Jing1,ZHAO Zhengyan1,*()
1. Zhejiang Neonatal Screening Center, Department of Genetics and Metabolism, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
2. Zhejiang Biosan Biochemical Technologies Co. Ltd, Hangzhou 310012, China
 全文: PDF(977 KB)   HTML( 20 )
摘要:

目的: 探讨新生儿3-羟基异戊酰基肉碱(C5-OH)代谢异常的遗传学原因。方法: 收集2018年1月至12月在浙江省新生儿遗传代谢病筛查中心经串联质谱法筛查结果为C5-OH增高的52例新生儿的资料,包括新生儿筛查与复查随访的C5-OH、C5-OH/C3、C5-OH/C8检测数据,并换算成C5-OH增高倍数。采用液相捕获技术靶向捕获MCCC1MCCC2等79个遗传代谢病相关基因,通过高通量测序和生物信息学分析获取基因的突变信息,参考美国医学遗传学与基因组学学会(ACMG)分类标准进行分级。依据基因检测情况,将C5-OH增高新生儿分为未检出突变组、MCCC1母源突变组、MCCC1父源突变组、MCCC2突变组,采用威尔科克森秩和检验分析不同组间C5-OH增高倍数的差异。结果: 37例检出MCCC1突变,涉及21种突变型,其中14种为新发现的突变型;4例检出MCCC2突变,涉及6种突变型,其中5种为新发现的突变型。MCCC1母源突变组、MCCC2突变组的C5-OH增高倍数均高于未检出突变组(均P < 0.05),MCCC1父源突变组的C5-OH增高倍数与未检出突变组差异无统计学意义(P>0.05)。结论: MCCC1MCCC2基因突变是导致新生儿血C5-OH增高的主要遗传学原因,其中母源性单杂合突变可导致中重度C5-OH增高。

关键词: 代谢缺陷, 先天性/血液有机酸类/血液酰基辅酶A/缺乏基因/遗传学质谱分析法新生儿筛查    
Abstract:

Objective: To investigate the genetic characterization of 3-hydroxyisovalerylcarnitine (C5-OH) metabolic abnormality in neonates. Methods: Fifty two newborns with increased C5-OH, C5-OH/C3 and C5-OH/C8 detected by tandem mass spectrometry during neonatal screening were enrolled in the study. Genomic DNA was extracted from the whole blood samples of 52 cases and their parents. Seventy-nine genes associated with genetic and metabolic diseases including MCCC1, MCCC2 were targeted by liquid capture technique. Variation information of these genes was examined by high-throughput sequencing and bioinformatic analysis, and then was classified based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines. The genetic types were classified as wild-type, MCCC1-maternal-mutation, MCCC1-paternal-mutation and MCCC2-mutation. Wilcoxon rank-sum test was performed for the increased multiples of C5-OH calculated in neonatal screening. Results: Twenty one MCCC1 variants (14 novel) were identified in 37 cases, 6 MCCC2 variants (5 novel) in 4 cases. The increased multiple of C5-OH calculated in MCCC1-maternal-mutation and MCCC2-mutation groups were significantly higher than that in wild-type group (all P < 0.05), while there was no significant difference between MCCC1-paternal-mutation group and wild-type group (P>0.05). Conclusion: Mutations on MCCC1 and MCCC2 genes are the major genetic causes for the increased C5-OH in neonates, and maternal single heterozygous mutation can contribute to the moderately to severely increased C5-OH.

Key words: Metabolism, inborn errors/blood    Organic acids/blood    Acyl coenzyme A/deficiency    Genes/genetics    Mass spectrometry    Neonatal screening
收稿日期: 2019-03-05 出版日期: 2019-10-30
:  R722.11  
基金资助: 浙江省分析测试科技计划(2018C3706);国家重点研发计划(2018YFC1002700);浙江省医药卫生科技计划(2015KYA118)
通讯作者: 赵正言     E-mail: 6506157@zju.edu.cn;zhaozy@zju.edu.cn
作者简介: 吴鼎文(1981—), 男, 学士, 主管技师, 主要从事新生儿遗传代谢病筛查和罕见病的遗传学检测分析研究; E-mail: 6506157@zju.edu.cn; https://orcid.org/0000-0003-4052-0863
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴鼎文
芦斌
杨建滨
杨茹莱
黄新文
童凡
郑静
赵正言

引用本文:

吴鼎文,芦斌,杨建滨,杨茹莱,黄新文,童凡,郑静,赵正言. 3-羟基异戊酰基肉碱代谢异常新生儿遗传学分析[J]. 浙江大学学报(医学版), 2019, 48(4): 390-396.

WU Dingwen,LU Bin,YANG Jianbin,YANG Rulai,HUANG Xinwen,TONG Fan,ZHENG Jing,ZHAO Zhengyan. Genetic analysis of newborns with abnormal metabolism of 3-hydroxyisovalerylcarnitine. J Zhejiang Univ (Med Sci), 2019, 48(4): 390-396.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.08.07        http://www.zjujournals.com/med/CN/Y2019/V48/I4/390

图 1  MCCC1突变位点分布情况
基因 区域 碱基 氨基酸 ACMG分类 数据库 文献 人群频率# 检出次数
#以基因组突变频率数据库(gnomAD)为例.ACMG:美国医学遗传学与基因组学学会.
MCCC1 外显子1 c.57G > A p.W19* 致病 1
MCCC1 内含子2 c.137-3C > A 意义未明 1
MCCC1 外显子3 c.227_228delTG p.V76Gfs*3 致病 1
MCCC1 外显子4 c.313C > T p.Q105* 致病 4.06×10-6 1
MCCC1 外显子4 c.321C > A p.Y107* 致病 1
MCCC1 外显子5 c.440T > G p.I147S 意义未明 1
MCCC1 内含子6 c.639+2T > A 致病 致病 8.12×10-6 10
MCCC1 外显子7 c.641G > T p.G214V 意义未明 2
MCCC1 外显子8 c.820dupA p.R274Kfs*4 致病 1
MCCC1 外显子8 c.863A > G p.E288G 致病 意义未明 2.58×10-5 2
MCCC1 内含子8 c.874-1G > A 致病 2
MCCC1 外显子9 c.881T > G p.I294S 意义未明 1
MCCC1 内含子11 c.1267+2T > G 致病 1
MCCC1 外显子12 c.1304C > T p.A435V 意义未明 4.06×10-6 1
MCCC1 外显子12 c.1315G > A p.V439M 意义未明 意义未明 8.12×10-6 1
MCCC1 外显子12 c.1331G > A p.R444H 可能致病 致病 2.84×10-5 2
MCCC1 外显子14 c.1630delA p.R544Dfs*2 致病 1
MCCC1 外显子14 c.1679dupA p.N560Kfs*10 致病 致病 3
MCCC1 外显子15 c.1731G > C p.Q577H 意义未明 1
MCCC1 外显子16 c.1759G > T p.G587C 意义未明 4.07×10-6 1
MCCC1 外显子16 c.1797delA p.K599Nfs*13 致病 2
MCCC2 外显子2 c.130G > C p.E44Q 意义未明 1
MCCC2 外显子2 c.157_159dupGTA p.V53_N54insV 意义未明 1
MCCC2 内含子4 c.384-20A > G 意义未明 可能致病 4.06×10-5 1
MCCC2 外显子6 c.562C > T p.R188X* 可能致病 1.22×10-5 2
MCCC2 内含子8 c.804-10T > G 意义未明 1
MCCC2 外显子11 c.1061C > T p.T354I 意义未明 1
表 1  MCCC1与MCCC2检出突变情况
图 2  不同组别新生儿C5-OH增高倍数分布
序号 C5-OH增高倍数 随访时间(月) 转归趋势 基因 突变位点 遗传来源 临床意见
初筛 随访 母亲
MCCC:甲基巴豆酰辅酶A羧化酶;3MCCD:3-甲基巴豆酰辅酶A羧化酶缺乏症; C5-OH:3-羟基异戊酰基肉碱.
1 24.14 1.01~21.60 169.64 10 逐步下降 MCCC1 c.440T > G 母亲 母源性3MCCD
2 13.98 0.92~7.53 119.13 6 逐步下降 MCCC1 c.639+2T > A 母亲 母源性3MCCD
3 15.19 1.25~10.66 166.43 6 逐步下降 MCCC1 c.639+2T > A 母亲 母源性3MCCD
4 18.20 2.15~19.92 189.20 2 逐步下降 MCCC1 c.1759G > T 母亲 母源性3MCCD
5 19.42 1.76~17.17 154.26 2 逐步下降 MCCC1 c.137-3C > A 母亲 母源性3MCCD
6 16.98 38.54~74.82 1.00 2 逐步下降 MCCC1 c.863A > G 母亲 原因不明,继续随访
7 19.65 63.61~99.87 2.65 11 持续增高 MCCC2 c.562C > T、c.1061C > T 母亲与父亲 原发性3MCCD
8 1.67 2.10~5.69 1.92 10 波动 MCCC2 c.384-20A > G、c.804-10T > G 母亲与父亲 原因不明,继续随访
9 5.41 4.5~5.85 1.66 2 维持 MCCC2 c.130G > C、c.157_159dupGTA 父亲与母亲 原因不明,继续随访
表 2  母源性3MCCD和C5-OH随访异常病例情况
1 KORMAN S H . Inborn errors of isoleucine degradation:a review[J]. Mol Genet Metab, 2006, 89 (4): 289- 299
doi: 10.1016/j.ymgme.2006.07.010
2 CATANZANO F , OMBRONE D , DI STEFANO C et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy:the importance of an integrated diagnostic approach[J]. J Inherit Metab Dis, 2010, 33 Suppl 3:S91- S94
3 RAMSAY J , MORTON J , NORRIS M et al. Organic acid disorders[J]. Ann Transl Med, 2018, 6 (24): 472
doi: 10.21037/atm.2018.12.39
4 KU C S , COOPER D N , POLYCHRONAKOS C et al. Exome sequencing:dual role as a discovery and diagnostic tool[J]. Ann Neurol, 2012, 71 (1): 5- 14
doi: 10.1002/ana.22647
5 RICHARDS S , AZIZ N , BALE S et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17 (5): 405- 424
doi: 10.1038/gim.2015.30
6 OMBRONE D , GIOCALIERE E , FORNI G et al. Expanded newborn screening by mass spectrometry:New tests, future perspectives[J]. Mass Spectrom Rev, 2016, 35 (1): 71- 84
doi: 10.1002/mas.21463
7 YUNUS Z M , RAHMAN S A , CHOYY S et al. Pilot study of newborn screening of inborn error of metabolism using tandem mass spectrometry in Malaysia:outcome and challenges[J]. J Pediatr Endocrinol Metab, 2016, 29 (9): 1031- 1039
8 黄新文, 杨建滨, 童凡 et al. 串联质谱技术对新生儿遗传代谢病的筛查及随访研究[J]. 中华儿科杂志, 2011, 49 (10): 765- 770
doi: 10.3760/cma.j.issn.0578-1310.2011.10.013
9 WOJCIK M H , WIERENGA K J , RODAN L H et al. Beta-ketothiolase deficiency presenting with metabolic stroke after a normal newborn screen in two individuals[J]. JIMD Rep, 2018, 39:45- 54
10 GRUNERT S C , SCHLATTER S M , SCHMITT R N et al. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency:Clinical presentation and outcome in a series of 37 patients[J]. Mol Genet Metab, 2017, 121 (3): 206- 215
doi: 10.1016/j.ymgme.2017.05.014
11 BALASUBRAMANIAM S , LEWIS B , MOCK D M et al. Leigh-like syndrome due to homoplasmic m.8993T > G variant with hypocitrullinemia and unusual biochemical features suggestive of multiple carboxylase deficiency (MCD)[J]. JIMD Rep, 2017, 33:99- 107
12 YANG L , YANG J , ZHANG T et al. Identification of eight novel mutations and transcript analysis of two splicing mutations in Chinese newborns with MCC deficiency[J]. Clin Genet, 2015, 88 (5): 484- 488
doi: 10.1111/cge.12535
[1] 童凡,杨茹莱,刘畅,吴鼎文,张婷,黄新文,洪芳,钱古柃,黄晓磊,周雪莲,舒强,赵正言. 新生儿酪氨酸血症筛查及基因谱分析[J]. 浙江大学学报(医学版), 2019, 48(4): 459-464.
[2] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[3] 祝敏,吴云秋,寿张飞. 基于尿液代谢组学技术研究尿毒清颗粒治疗慢性肾功能衰竭的机制[J]. 浙江大学学报(医学版), 2018, 47(6): 628-635.
[4] 任晓梅 等. 低盐饮食对犬类心脏组织基因表达的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 433-438.
[5] 李恩书 等. 不同氧浓度培养对体外受精-胚胎移植及子代出生缺陷的影响[J]. 浙江大学学报(医学版), 2017, 46(3): 290-294.
[6] 郑静 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255.
[7] 洪芳 等. 浙江省新生儿有机酸尿症筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 240-247.
[8] 朱晖 等. 高龄孕妇外周血胎儿游离DNA产前筛查胎儿常见非整倍体的临床意义[J]. 浙江大学学报(医学版), 2017, 46(3): 256-261.
[9] 黄新文 等. 浙江省新生儿氨基酸代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 233-239.
[10] 马婷婷,王毅,陈晓倩,赵筱萍. 液相色谱-质谱联用导向的黄葵胶囊肾保护活性物质研究[J]. 浙江大学学报(医学版), 2017, 46(1): 66-73.
[11] 邱丽萍, 孙文均. 应用高效液相色谱串联质谱法检测细胞内神经酰胺的含量[J]. 浙江大学学报(医学版), 2015, 44(4): 429-434.
[12] 章向群,吴凌华,陈方军,张伊,陈璐. 高效液相色谱-质谱法测定伏格列波糖片中伏格列波糖含量[J]. 浙江大学学报(医学版), 2014, 43(2): 141-144.
[13] 孔思思,涂美娟,杨希,赵垒,周慧,曾苏,蒋惠娣. 去铁酮与人有机阳离子转运体及有机阴离子转运体1体外相互作用研究[J]. 浙江大学学报(医学版), 2014, 43(2): 129-134.
[14] . 脑得生片物质基础的HPLC-DAD-MSn分析[J]. 浙江大学学报(医学版), 2012, 41(1): 32-42.
[15] . 白芍中19种农药残留的毛细管电泳-质谱联用检测方法[J]. 浙江大学学报(医学版), 2012, 41(1): 25-31.