Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (5): 541-551    DOI: 10.3785/j.issn.1008-9292.2018.10.15
综述     
PML蛋白参与三氧化二砷治疗急性早幼粒细胞白血病的分子生物学机制研究
郝睿1,2(),苏力德1,2,邵一鸣1,2,部娜3,马丽亚4,那仁满都拉1,2,4,5,*()
1. 内蒙古医科大学药学院药理教研室, 内蒙古 呼和浩特 010000
2. 浙江大学医学院公共卫生学院, 浙江 杭州 310058
3. 浙江大学医学院附属妇产科医院药剂科, 浙江 杭州 310006
4. 浙江大学医学院附属第一医院血液科, 浙江 杭州 310003
5. 浙江大学医学院药理研究所, 浙江 杭州 310058
Involvement of PML proteins in treatment of acute promyelocytic leukemia with arsenic trioxide
HAO Rui1,2(),SU Lide1,2,SHAO Yiming1,2,BU Na3,MA Liya4,NARANMAN DURAHua1,2,4,5,*()
1. Department of Pharmacology, Inner Mongolia Medical University, Hohhot 010000, China
2. School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
3. Department of Pharmacy, Woman's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
4. Department of Hematology, the First Affiliate Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
5. Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(1304 KB)   HTML( 10 )
摘要:

PML蛋白作为一种肿瘤抑制因子,在三氧化二砷治疗急性早幼粒细胞白血病(APL)的过程中发挥重要作用。绝大多数APL患者的典型特征是细胞内PML基因和RARα基因发生融合,该融合基因所表达的PML-RARα融合蛋白是APL发病的主要原因。三氧化二砷作为临床治疗APL的一线药物,通过直接作用于PML-RARα融合蛋白的PML部分,诱导相关蛋白多聚化,并招募多种功能蛋白,促进PML核小体重构,使PML-RARα蛋白发生小泛素修饰蛋白(SUMO)化和泛素化,最终经蛋白酶体途径降解,达到治疗APL的目的。PML蛋白发生点突变会导致APL复发及三氧化二砷耐药。本文阐述了PML蛋白的结构和功能、PML-RARα融合蛋白诱导APL发病的机制、PML蛋白参与三氧化二砷治疗APL的分子机制以及PML蛋白发生突变导致APL患者发生三氧化二砷耐药的现象,以期为目前治疗方案的优化及针对耐药患者有效治疗手段的开发提供理论指导。

关键词: 白血病, 早幼粒细胞, 急性/药物疗法砷剂/治疗应用肿瘤蛋白质类/生物合成小泛素相关修饰蛋白质类/遗传学    
Abstract:

Promyelocytic leukemia (PML) protein, a tumor suppressor, plays an important role in patients with acute promyelocytic leukemia (APL) receiving arsenic trioxide (As2O3) therapy. APL is a M3 subtype of acute myeloid leukemia (AML), which is characterized by expression of PML-RARα (P/R) fusion protein, leading to the oncogenesis. As2O3 is currently used as the first-line drug for patients with APL, and the mechanism may be:As2O3 directly binds to PML part of P/R protein and induces multimerization of related proteins, which further recruits different functional proteins to reform PML nuclear bodies (PML-NBs), and finally it degraded by SUMOylation and ubiquitination proteasomal pathway. Gene mutations may lead to relapse and drug resistance after As2O3 treatment. In this review, we discuss the structure and function of PML proteins; the pathogenesis of APL induced by P/R fusion protein; the involvement of PML protein in treatment of APL patient with As2O3; and explain how PML protein mutations could cause resistance to As2O3 therapy.

Key words: Leukemia, promyelocytic, acute/drug therapy    Arsenicals/therapeutic use    Neoplasm proteins/biosynthesis    Small ubiquitin-related modifier proteins/genetics
收稿日期: 2018-07-20 出版日期: 2019-01-23
:  R733.71  
基金资助: 国家自然科学基金(81473289, 81673521, 81603125, 81600139)
通讯作者: 那仁满都拉     E-mail: hao61977@163.com;narenman@zju.edu.cn
作者简介: 郝睿(1993-), 女, 硕士研究生, 主要从事砷剂治疗急性早幼粒细胞白血病的机制研究; E-mail:hao61977@163.com; https://orcid.org/0000-0002-9700-1434
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郝睿
苏力德
邵一鸣
部娜
马丽亚
那仁满都拉

引用本文:

郝睿,苏力德,邵一鸣,部娜,马丽亚,那仁满都拉. PML蛋白参与三氧化二砷治疗急性早幼粒细胞白血病的分子生物学机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 541-551.

HAO Rui,SU Lide,SHAO Yiming,BU Na,MA Liya,NARANMAN DURAHua. Involvement of PML proteins in treatment of acute promyelocytic leukemia with arsenic trioxide. J Zhejiang Univ (Med Sci), 2018, 47(5): 541-551.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.10.15        http://www.zjujournals.com/med/CN/Y2018/V47/I5/541

图 1  早幼粒细胞白血病(PML)各亚型结构示意图
PML亚型 功能
PML-Ⅰ 促进骨髓细胞的分化[24];与单纯疱疹病毒1型早期蛋白ICP0连接,该蛋白具有E3泛素连接酶功能域,使PML-Ⅰ型蛋白可通过ICP0降解[25-26]
PML-Ⅱ 特异性抑制脊髓小脑共济失调Ⅲ蛋白(ATXN3)去泛素酶活性, 拮抗ATXN3对PML核小体的干扰[27];5型腺病毒通过作用于PML-Ⅱ型蛋白外显子7b,提高病毒的转录水平,干扰PML核小体形成[28]
PML-Ⅲ 抑制有丝分裂激酶极光激酶A,调控细胞中心体的复制[29]
PML-Ⅳ 保护细胞免受狂犬病毒、水痘-带状疱疹病毒、脑心肌炎病毒等感染[30-32];在PML核小体中,PML-Ⅳ型蛋白通过招募并激活P53蛋白,从而促进细胞凋亡及衰老[33-35]
PML-Ⅴ 可能是构成PML核小体的主要骨架蛋白,并通过其羧基端的第591~611位氨基酸招募死亡结构域相关蛋白、SP100等相关蛋白形成核小体[36]
PML-Ⅵ 由于其在外显子7a部分缺乏SUMO相互作用基序(SIM)结构,致使PML-Ⅵ型蛋白表现出对三氧化二砷有抗性[22, 37],但也有报道指出PML-Ⅵ可被三氧化二砷完全降解,因此该亚型的功能有待进一步考证
PML-Ⅶ 在细胞因子信号转导[38]、细胞凋亡[39]、病毒防御方面发挥重要作用[40]
表 1  早幼粒细胞白血病(PML)蛋白各亚型及其功能
图 2  不同早幼粒细胞白血病-维甲酸受体α(PML-RARα)融合蛋白结构示意图
图 3  三氧化二砷作用于早幼粒细胞白血病(PML)蛋白部分示意图
图 4  相关功能蛋白与早幼粒细胞白血病(PML)蛋白通过SUMO相结合
图 5  早幼粒细胞白血病(PML)蛋白SUMO化过程
图 6  PML-RARα点突变干扰三氧化二砷诱导PML-RARα蛋白降解示意图
1 WANG Z Y , CHEN Z , WANG Z Y et al. Acute promyelocytic leukemia:from highly fatal to highly curable[J]. Blood, 2008, 111 (5): 2505- 2515
doi: 10.1182/blood-2007-07-102798
2 WENNSTR?M L , EDSLEV P W , ABRAHAMSSON J et al. Acute myeloid leukemia in adolescents and young adults treated in pediatric and adult departments in the nordic countries[J]. Pediatr Blood Cancer, 2016, 63 (1): 83- 92
doi: 10.1002/pbc.25713
3 ABEDIN S , ALTMAN J K . Acute promyelocytic leukemia:preventing early complications and late toxicities[J]. Hematology Am Soc Hematol Educ Program, 2016, 2016 (1): 10- 15
doi: 10.1182/asheducation-2016.1.10
4 张亭栋 . 含砷中药治疗白血病研究:谈谈癌灵1号注射液对白血病的治疗[J]. 中国中西医结合杂志, 1998, 18 (10): 581
ZHANG Tingdong . Study on treatment of APL with traditional Chinese medicine containing arsenic:talking about the treatment of APL by Ailing No.1 injection[J]. Chinese Journal of Integrated Traditional and Western Medicine, 1998, 18 (10): 581
5 ZHANG X W , YAN X J , ZHOU Z R et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML[J]. Science, 2010, 328 (5975): 240- 243
doi: 10.1126/science.1183424
6 PLATZBECKER U , AVVISATI G , CICCONI L et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia:final results of the randomized Italian-German APL0406 trial[J]. J Clin Oncol, 2017, 35 (6): 605- 612
doi: 10.1200/JCO.2016.67.1982
7 ABAZA Y , KANTARJIAN H , GARCIA-MANERO G et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab[J]. Blood, 2017, 129 (10): 1275- 1283
doi: 10.1182/blood-2016-09-736686
8 KUTNY M A , ALONZO T A , GERBINGR B et al. Arsenic trioxide consolidation allows anthracycline dose reduction for pediatric patients with acute promyelocytic leukemia:report from the children's oncology group phase Ⅲ historically controlled trial AAML0631[J]. J Clin Oncol, 2017, 35 (26): 3021- 3029
doi: 10.1200/JCO.2016.71.6183
9 LIANG B , ZHENG Z , SHI Y et al. Maintenance therapy with all-trans retinoic acid and arsenic trioxide improves relapse-free survival in adults with low-to intermediate-risk acute promyelocytic leukemia who have achieved complete remission after consolidation therapy[J]. Onco Targets Ther, 2017, 10:2305- 2313
doi: 10.2147/OTT
10 MI J Q , LI J M , SHEN Z X et al. How to manage acute promyelocytic leukemia[J]. Leukemia, 2012, 26 (8): 1743- 1751
doi: 10.1038/leu.2012.57
11 FOX E , RAZZOUK B I , WIDEMANNB C et al. Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma[J]. Blood, 2008, 111 (2): 566- 573
doi: 10.1182/blood-2007-08-107839
12 SOIGNET S L , FRANKEL S R , DOUER D et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia[J]. J Clin Oncol, 2001, 19 (18): 3852- 3860
doi: 10.1200/JCO.2001.19.18.3852
13 LIU J , ZHU H H , JIANG H et al. Varying responses of PML-RARA with different genetic mutations to arsenic trioxide[J]. Blood, 2016, 127 (2): 243- 250
doi: 10.1182/blood-2015-04-637678
14 REYMOND A , MERONI G , FANTOZZI A et al. The tripartite motif family identifies cell compartments[J]. EMBO J, 2001, 20 (9): 2140- 2151
doi: 10.1093/emboj/20.9.2140
15 NISOLE S , STOYE J P , SA?B A . TRIM family proteins:retroviral restriction and antiviral defence[J]. Nat Rev Microbiol, 2005, 3 (10): 799- 808
doi: 10.1038/nrmicro1248
16 KASTNER P , PEREZ A , LUTZ Y et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL):structural similarities with a new family of oncoproteins[J]. Embo Journal, 1992, 11 (2): 629- 642
doi: 10.1002/embj.1992.11.issue-2
17 SALOMONI P , FERGUSON B J , WYLLIE A H et al. New insights into the role of PML in tumour suppression[J]. Cell Res, 2008, 18 (6): 622- 640
doi: 10.1038/cr.2008.58
18 GOTO E , TOMITA A , HAYAKAWA F et al. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment[J]. Blood, 2011, 118 (6): 1600- 1609
doi: 10.1182/blood-2011-01-329433
19 MCMANUS F P , BOURDEAU V , ACEVEDO M et al. Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated proteins and an anti-senescence function of UBC9[J]. Sci Rep, 2018, 8 (1): 7754
doi: 10.1038/s41598-018-25150-z
20 MAROUI M A , MAARIFI G , MCMANUS F P et al. Promyelocytic leukemia protein (PML) requirement for interferon-induced global cellular SUMOylation[J]. Mol Cell Proteomics, 2018, 17 (6): 1196- 1208
doi: 10.1074/mcp.RA117.000447
21 LI C , PENG Q , WAN X et al. C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation[J]. J Cell Sci, 2017, 130 (20): 3496- 3506
doi: 10.1242/jcs.202879
22 MAROUI M A, KHEDDACHE-ATMANE S, EL A F, et al. Requirement of PML SUMO interacting motif for RNF4-or arsenic trioxide-induced degradation of nuclear PML isoforms[J/OL]. PLoS One, 2012, 7(9): e44949.
23 JENSEN K , SHIELS C , FREEMONT P S . PML protein isoforms and the RBCC/TRIM motif[J]. Oncogene, 2001, 20 (49): 7223- 7233
doi: 10.1038/sj.onc.1204765
24 NGUYEN L A , PANDOLFI P P , AIKAWA Y et al. Physical and functional link of the leukemia-associated factors AML1 and PML[J]. Blood, 2005, 105 (1): 292- 300
doi: 10.1182/blood-2004-03-1185
25 BOUTELL C, CUCHET-LOUREN?O D, VANNI E, et al. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence[J/OL]. PLoS Pathog, 2011, 7(9): e1002245.
26 CUCHET-LOUREN?O D , VANNI E , GLASS M et al. Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation[J]. J Virol, 2012, 86 (20): 11209- 11222
doi: 10.1128/JVI.01145-12
27 耿云云.急性早幼粒细胞白血病蛋白PML亚型Ⅱ功能研究[D].北京: 中国农业大学, 2015.
GENG Yunyun. Studies on the function of promyelocytic leukemia protein isoform Ⅱ[D]. Beijing: China Agricultural University, 2015. (in Chinese)
28 LEPPARD K N , EMMOTT E , CORTESE M S et al. Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform Ⅱ that is predicted as a protein interaction site by bioinformatic analysis[J]. J Gen Virol, 2009, 90 (Pt 1): 95- 104
29 XU Z X , ZOU W X , LIN P et al. A role for PML3 in centrosome duplication and genome stability[J]. Mol Cell, 2005, 17 (5): 721- 732
doi: 10.1016/j.molcel.2005.02.014
30 BLONDEL D , KHEDDACHE S , LAHAYE X et al. Resistance to rabies virus infection conferred by the PMLIV isoform[J]. J Virol, 2010, 84 (20): 10719- 10726
doi: 10.1128/JVI.01286-10
31 MAROUI M A , PAMPIN M , CHELBI-ALIX M K . Promyelocytic leukemia isoform Ⅳ confers resistance to encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies[J]. J Virol, 2011, 85 (24): 13164- 13173
doi: 10.1128/JVI.05808-11
32 REICHELT M, WANG L, SOMMER M, et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus[J/OL]. PLoS Pathog, 2011, 7(2): e1001266.
33 BISCHOF O , KIRSH O , PEARSON M et al. Deconstructing PML-induced premature senescence[J]. Embo Journal, 2002, 21 (13): 3358- 3369
doi: 10.1093/emboj/cdf341
34 GUO A , SALOMONI P , LUO J et al. The function of PML in p53-dependent apoptosis[J]. Nat Cell Biol, 2000, 2 (10): 730- 736
doi: 10.1038/35036365
35 PEARSON M , CARBONE R , SEBASTIANI C et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras[J]. Nature, 2000, 406 (6792): 207- 210
doi: 10.1038/35018127
36 GENG Y , MONAJEMBASHI S , SHAO A et al. Contribution of the C-terminal regions of promyelocytic leukemia protein (PML) isoforms Ⅱ and Ⅴ to PML nuclear body formation[J]. J Biol Chem, 2012, 287 (36): 30729- 30742
doi: 10.1074/jbc.M112.374769
37 PERCHERANCIER Y , GERMAIN-DESPREZ D , GALISSON F et al. Role of SUMO in RNF4-mediated promyelocytic leukemia protein (PML) degradation:sumoylation of PML and phospho-switch control of its SUMO binding domain dissected in living cells[J]. J Biol Chem, 2009, 284 (24): 16595- 16608
doi: 10.1074/jbc.M109.006387
38 LIN H K , BERGMANN S , PANDOLFI P P . Cytoplasmic PML function in TGF-beta signalling[J]. Nature, 2004, 431 (7005): 205- 211
doi: 10.1038/nature02783
39 GIORGI C , ITO K , LIN H K et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release[J]. Science, 2010, 330 (6008): 1247- 1251
doi: 10.1126/science.1189157
40 MCNALLY B A, TRGOVCICH J, MAUL G G, et al. A role for cytoplasmic PML in cellular resistance to viral infection[J/OL]. PLoS One, 2008, 3(5): e2277.
41 CHANG H R , MUNKHJARGAL A , KIM M J et al. The functional roles of PML nuclear bodies in genome maintenance[J]. Mutat Res, 2018, 809:99- 107
doi: 10.1016/j.mrfmmm.2017.05.002
42 MVLLER S , DEJEAN A . Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption[J]. J Virol, 1999, 73 (6): 5137- 5143
43 BURROUGHS A F , ELUHU S , WHALEN D et al. PML-nuclear bodies regulate the stability of the fusion protein dendra2-Nrf2 in the nucleus[J]. Cell Physiol Biochem, 2018, 47 (2): 800- 816
doi: 10.1159/000490033
44 SAHIN U , LALLEMAND-BREITENBACH V , DE THé H . PML nuclear bodies:regulation, function and therapeutic perspectives[J]. J Pathol, 2014, 234 (3): 289- 291
doi: 10.1002/path.2014.234.issue-3
45 VOISSET E , MORAVCSIK E , STRATFORD E W et al. Pml nuclear body disruption cooperates in APL pathogenesis and impairs DNA damage repair pathways in mice[J]. Blood, 2018, 131 (6): 636- 648
doi: 10.1182/blood-2017-07-794784
46 LALLEMAND-BREITENBACH V , DE THé H . PML nuclear bodies[J]. Cold Spring Harb Perspect Biol, 2010, 2 (5): a000661
47 ZELENT A , GUIDEZ F , MELNICK A et al. Translocations of the RARalpha gene in acute promyelocytic leukemia[J]. Oncogene, 2001, 20 (49): 7186- 7203
doi: 10.1038/sj.onc.1204766
48 SHIMA Y , HONMA Y , KITABAYASHI I . PML-RARα and its phosphorylation regulate pml oligomerization and HIPK2 stability[J]. Cancer Res, 2013, 73 (14): 4278- 4288
doi: 10.1158/0008-5472.CAN-12-3814
49 MILLER W H , SCHIPPER H M , LEE J S et al. Mechanisms of action of arsenic trioxide[J]. Cancer Res, 2002, 62 (14): 3893- 3903
50 LALLEMAND BREITENBACH V , JEANNE M , BENHENDA S et al. Arsenic degrades PML or PML RAR alpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway[J]. Nat Cell Biol, 2008, 10 (5): 547- 555
doi: 10.1038/ncb1717
51 SAHIN U , FERHI O , JEANNE M et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins[J]. J Cell Biol, 2014, 204 (6): 931- 945
doi: 10.1083/jcb.201305148
52 ZHU J , KOKEN M H , QUIGNON F et al. Arsenic-induced PML targeting onto nuclear bodies:implications for the treatment of acute promyelocytic leukemia[J]. Proc Natl Acad Sci U S A, 1997, 94 (8): 3978- 3983
doi: 10.1073/pnas.94.8.3978
53 HAYR T . SUMO:a history of modification[J]. Mol Cell, 2005, 18 (1): 1- 12
54 BODDY M N , HOWE K , ETKIN L D et al. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia[J]. Oncogene, 1996, 13 (5): 971- 982
55 SAHIN U , DE THé H , LALLEMAND-BREITENBACH V . PML nuclear bodies:Assembly and oxidative stress-sensitive sumoylation[J]. Nucleus, 2014, 5 (6): 499- 507
doi: 10.4161/19491034.2014.970104
56 WANG Z , CAO L , KANG R et al. Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARα oncoprotein[J]. Autophagy, 2011, 7 (4): 401- 411
doi: 10.4161/auto.7.4.14397
57 GUO Z , MENG M , GENG S et al. The optimal dose of arsenic trioxide induced opposite efficacy in autophagy between K562 cells and their initiating cells to eradicate human myelogenous leukemia[J]. J Ethnopharmacol, 2017, 196:29- 38
doi: 10.1016/j.jep.2016.12.010
58 CHEN G Q , ZHOU L , STYBLO M et al. Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells[J]. Cancer Res, 2003, 63 (8): 1853- 1859
59 QIAN W Q , YI Z X , FANG Z Y et al. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation[J]. Oncotarget, 2015, 6 (28): 25646- 25659
60 MAIMAITIYIMING Y , WANG C , XU S et al. Role of arsenic (+3 oxidation state) methyltransferase in arsenic mediated APL treatment:an in vitro investigation[J]. Metallomics, 2018, 10 (6): 828- 837
doi: 10.1039/C8MT00057C
61 NARANMANDURA H , XU S , KOIKE S et al. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMAⅢ)-induced cytotoxicity[J]. Toxicol Appl Pharmacol, 2012, 260 (3): 241- 249
doi: 10.1016/j.taap.2012.02.017
62 ZAKHARYAN R A , AYALA-FIERRO F , CULLEN W R et al. Enzymatic methylation of arsenic compounds. Ⅶ. Monomethylarsonous acid (MMAⅢ) is the substrate for MMA methyltransferase of rabbit liver and human hepatocytes[J]. Toxicol Appl Pharmacol, 1999, 158 (1): 9- 15
doi: 10.1006/taap.1999.8687
63 NARANMANDURA H , XU S , SAWATA T et al. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(Ⅲ))-induced cytotoxicity[J]. Chem Res Toxicol, 2011, 24 (7): 1094- 1103
doi: 10.1021/tx200156k
64 CUNNINGHAM I , GEE T S , REICH L M et al. Acute promyelocytic leukemia:treatment results during a decade at Memorial Hospital[J]. Blood, 1989, 73 (5): 1116- 1122
65 SANZ M A , JARQUE I , MARTI'N G et al. Acute promyelocytic leukemia. Therapy results and prognostic factors[J]. Cancer, 1988, 61 (1): 7- 13
doi: 10.1002/(ISSN)1097-0142
66 FENAUX P , CASTAIGNE S , DOMBRET H et al. All-transretinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia:a pilot study on 26 cases[J]. Blood, 1992, 80 (9): 2176- 2181
67 FENAUX P . Results of APL 91 European trial combining ATRA and chemotherapy:presentation of APL 1993 trial[J]. Leukemia, 1994, 8 (Suppl 3): S70- S72
68 OHNO R , OHNISHI K , TAKESHITA A et al. All-trans retinoic acid therapy in relapsed/refractory or newly diagnosed acute promyelocytic leukemia (APL) in Japan[J]. Leukemia, 1994, 8 (Suppl 3): S64- S69
69 DEGOS L , DOMBRET H , CHOMIENNE C et al. All-trans-retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia[J]. Blood, 1995, 85 (10): 2643- 2653
70 SHEN Z X , CHEN G Q , NI J H et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL):Ⅱ. clinical efficacy and pharmacokinetics in relapsed patients[J]. Blood, 1997, 89 (9): 3354- 3360
71 NIU C , YAN H , YU T et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide:remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients[J]. Blood, 1999, 94 (10): 3315- 3324
72 SHIGENO K , NAITO K , SAHARA N et al. Arsenic trioxide therapy in relapsed or refractory Japanese patients with acute promyelocytic leukemia:updated outcomes of the phase Ⅱ study and postremission therapies[J]. Int J Hematol, 2005, 82 (3): 224- 229
doi: 10.1532/IJH97.05044
73 ZHU H H , QIN Y Z , HUANG X J . Resistance to arsenic therapy in acute promyelocytic leukemia[J]. N Engl J Med, 2014, 370 (19): 1864- 1866
doi: 10.1056/NEJMc1316382
74 BAI D M , ZHENG X F . PML-RARA mutations confer varying arsenic trioxide resistance[J]. Protein Cell, 2017, 8 (4): 296- 301
doi: 10.1007/s13238-016-0356-4
[1] 林伟仁 等. zeste基因增强子同源物2抑制剂GSK126对前列腺癌细胞的作用及机制[J]. 浙江大学学报(医学版), 2016, 45(4): 356-363.