Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (4): 427-432    DOI: 10.3785/j.issn.1008-9292.2017.08.13
原著     
CRISPR/Cas9基因编辑技术构建靶向敲除小鼠微小RNA-101a基因的一体化载体系统
陈达华, 厉有名
浙江大学医学院附属第一医院消化内科, 浙江 杭州 310003
Construction of all-in-one CRISPR/Cas9 vector system targeting miR-101a gene in mouse hepatic cell line AML12
CHEN Dahua, LI Youming
Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(2748 KB)  
摘要:

目的:利用CRISPR/Cas9基因编辑技术构建两种一体化载体,用于敲除AML12细胞系中的微小RNA(microRNA,miR)-101a。方法:设计三条小鼠靶向miR-101a基因的小向导RNA(sgRNA)以及一条靶向绿色荧光蛋白基因的sgRNA,分别构建至一体化载体系统(pENTRY-U6-sgRNA-EF1α-WT Cas9),并将sgRNA1和sgRNA3构建至一体化载体系统(pENTRY-U6-sgRNA-U6-sgRNA-EF1α-Cas9 D10A)。在AML12细胞系中转染构建的一体化质粒,72 h后用T7核酸内切酶Ⅰ(T7EⅠ)检测剪切效率。将pENTRY一体化质粒通过Gateway的方式重组到pAD载体中,再转染293A细胞进行腺病毒包装。在AML12细胞系中进行腺病毒感染,72 h后检测miR-101a成熟体的表达水平以评估敲除效率。结果:构建的pENTRY一体化质粒经测序鉴定后正确。质粒转染AML12细胞系后进行T7EⅠ检测,均发生了明显剪切形成了两条带,表明设计的sgRNA有效果。pENTRY一体化质粒重组到pAD载体中,经酶切鉴定正确。腺病毒转染AML12细胞系后,实时荧光定量PCR检测表明细胞中miR-101a成熟体表达水平较对照组均明显下降(均P<0.01)。结论:构建了具有较高敲除效率的靶向小鼠miR-101a基因的一体化载体系统,为后续微小RNA功能研究奠定了技术支撑和实验基础,同时也为其他微小RNA敲除提供了借鉴方法。

关键词: RNA编辑微RNAs小鼠基因敲除腺病毒科质粒转染遗传载体细胞培养的聚合酶链反应    
Abstract:

Objective:To develop an all-in-one CRISPR/Cas9 vector system that can efficiently knockdown miR-101a expression in mice.Methods:Three sgRNAs targeting mouse miR-101a gene and a small guide (sgRNA) targeting green fluorescent protein gene were designed and constructed into an all-in-one vector system (pENTRY-U6-sgRNA-WT Cas9). Moreover, sgRNA1 and sgRNA3 were selected and constructed into a double-nicking Cas9 vector (pENTRY-U6-sgRNA-U6-sgRNA-Cas9 D10A). The constructed plasmids were transfected into mouse liver AML12 cells for validation by T7 EndoⅠ(T7EⅠ) 72 h after transfection. The pAD vectors were cloned via the Gateway system, and the recombinant adenovirus vectors were packaged in 293A cells. The virus particles were used to infect AML12 cells and the expression levels of mature miR-101a were analyzed to monitor the knockout efficiency after 72 h. Results:The constructed pENTRY all-in-one vectors were validated by gene sequencing and T7EⅠ assay, which showed CRISPR/Cas9-mediated mismatches at target sites of miR-101a gene. The adenovirus vectors were constructed successfully. The CRISPR/Cas9 containing adenovirus was introduced to AML12 cells and the quantitative real-time PCR assays indicated that the expression level of mature miR-101a was significantly decreased compared with that of the control (all P<0.01). Conclusions:We have successfully constructed two "all-in-one" CRISPR/Cas9 vector systems targeting miR-101a gene in mouse liver AML12 cells with high efficiency. It provides experimental basis for research of microRNA, and a reference method for knockout of other miRNAs.

Key words: RNA editing    MicroRNAs    Mice, knockout    Adenoviridae    Plasmids    Transfection    Genetic vectors    Cells, cultured    Polymerase chain reaction
收稿日期: 2017-02-28 出版日期: 2017-08-25
CLC:  Q78  
通讯作者: 厉有名(1956-),男,硕士,教授,主任医师,博士生导师,主要从事酒精性肝病和非酒精性脂肪性肝病发病机制研究;E-mail:zlym@zju.edu.cn;http://orcid.org/0000-0001-9103-4369     E-mail: zlym@zju.edu.cn
作者简介: 陈达华(1991-),男,硕士研究生,主要从事非酒精性脂肪性肝病发病机制研究;E-mail:mouzi2011@163.com;http://orcid.org/0000-0002-2275-4693
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈达华 等. CRISPR/Cas9基因编辑技术构建靶向敲除小鼠微小RNA-101a基因的一体化载体系统[J]. 浙江大学学报(医学版), 2017, 46(4): 427-432.

CHEN Dahua, LI Youming. Construction of all-in-one CRISPR/Cas9 vector system targeting miR-101a gene in mouse hepatic cell line AML12. Journal of ZheJiang University(Medical Science), 2017, 46(4): 427-432.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.08.13        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I4/427

[1] KIM K, KIM J H, KIM I, et al. MicroRNA-26a regulates RANKL-induced osteoclast formation[J]. Mol Cells,2015,38(1):75-80.
[2] PENG X, CAO P, LI J, et al. MiR-1204 sensitizes nasopharyngeal carcinoma cells to paclitaxel both in vitro and in vivo[J]. Cancer Biol Ther,2015,16(2):261-267.
[3] WANG L J, ZHANG K L, ZHANG N, et al. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma[J]. Oncotarget,2015,6(21):18631-18640.
[4] BAER C, CLAUS R, PLASS C. Genome-wide epigenetic regulation of miRNAs in cancer[J]. Cancer Res,2013,73(2):473-477.
[5] WANG L, LI L, GUO R, et al. miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2[J]. Cell Physiol Biochem,2014,34(2):413-422.
[6] GUO F, COGDELL D, HU L, et al. MiR-101 suppresses the epithelial-to-mesenchymal transition by targeting ZEB1 and ZEB2 in ovarian carcinoma[J]. Oncol Rep,2014,31(5):2021-2028.
[7] KONNO Y, DONG P, XIONG Y, et al. MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells[J]. Oncotarget,2014,5(15):6049-6062.
[8] CAO K, LI J, ZHAO Y, et al. miR-101 inhibiting cell proliferation, migration and invasion in hepatocellular carcinoma through downregulating girdin[J]. Mol Cells,2016,39(2):96-102.
[9] XU Y, AN Y, WANG Y, et al. miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells[J]. Oncol Rep,2013,29(5):2019-2024.
[10] ZHANG Y, GUO X, XIONG L, et al. MicroRNA-101 suppresses SOX9-dependent tumorigenicity and promotes favorable prognosis of human hepatocellular carcinoma[J]. FEBS Lett,2012,586(24):4362-4370.
[11] CALIN G A, CROCE C M. MicroRNA signatures in human cancers[J]. Nat Rev Cancer,2006,6(11):857-866.
[12] CHEN X, BA Y, MA L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res,2008,18(10):997-1006.
[13] DEVEAU H, GARNEAU J E, MOINEAU S. CRISPR/Cas system and its role in phage-bacteria interactions[J]. Annu Rev Microbiol,2010,64:475-493.
[14] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821.
[15] MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.

[1] 杨荣 等. Molday IONTM EverGreen标记大鼠骨髓内皮祖细胞及体外磁共振成像研究[J]. 浙江大学学报(医学版), 2017, 46(5): 481-486.
[2] 张格尔 等. 20例剖宫产术后瘢痕部位妊娠滋养细胞疾病回顾性分析[J]. 浙江大学学报(医学版), 2017, 46(5): 529-536.
[3] 胡静 等. 记忆T细胞在行放射治疗的非小细胞肺癌患者中的表达及其预后预测价值[J]. 浙江大学学报(医学版), 2017, 46(5): 523-528.
[4] 董飞 等. 磁共振成像强化信号特征预测胶质母细胞瘤EGFR基因扩增状态的影像组学研究[J]. 浙江大学学报(医学版), 2017, 46(5): 492-497.
[5] 邝平定 等. 双能量CT对非小细胞肺癌淋巴结转移的诊断价值[J]. 浙江大学学报(医学版), 2017, 46(5): 511-516.
[6] 姜贻乾 等. 微小RNA-29b对乳腺癌细胞增殖和迁移的影响及其分子生物学机制[J]. 浙江大学学报(医学版), 2017, 46(4): 349-356.
[7] 王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.
[8] 任晓梅 等. 低盐饮食对犬类心脏组织基因表达的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 433-438.
[9] 李钰 等. 长链非编码RNA RP11-770J1.3和跨膜蛋白25对紫杉醇耐药人乳腺癌细胞株耐药性的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 364-370.
[10] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[11] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[12] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[13] 邹丽霞 等. 人源化白细胞介素-6受体抗体治疗全身型幼年特发性关节炎的疗效及安全性[J]. 浙江大学学报(医学版), 2017, 46(4): 421-426.
[14] 唐敏悦 等. 半乳糖凝集素1在母胎界面参与胚胎着床和妊娠维持的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 321-327.
[15] 张玮,来利华,王青青. 巨噬细胞中FBXW7基因缺失对小鼠黑色素瘤肺转移的影响[J]. 浙江大学学报(医学版), 2017, 46(2): 111-117.