Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (5): 640-646    DOI: 10.3724/zdxbyxb-2021-0406
综述     
分子伴侣HSP40/DNAJ蛋白家族及其在神经退行性疾病中的作用
何颖慧,王志萍
浙江大学医学院脑科学与脑医学学院 浙江大学医学院神经科学中心 国家卫生 健康委员会医学神经生物学重点实验室 中国医学科学院医学神经生物学重点 实验室,浙江 杭州 310058
The roles of HSP40/DNAJ protein family in neurodegenerative diseases
HE Yinghui,WANG Zhiping
School of Brain Science and Brain Medicine, Center for Neuroscience, Zhejiang University School of Medicine, NHC Key Laboratory of Medical Neurobiology, CAMS Key Laboratory of Medical Neurobiology, Hangzhou 310058, China
 全文: PDF(574 KB)   HTML( 19 )
摘要:

分子伴侣和辅助伴侣分子能够促进新合成多肽的组装以及帮助未折叠或错误折叠的蛋白质重新折叠形成正确折叠的蛋白质,从而维持细胞内蛋白系统的稳态。作为热休克蛋白(HSP)70的辅助伴侣分子,HSP40(DNAJ)蛋白家族是目前已知的最大分子伴侣家族,能够通过J结构域与HSP70结合,从而帮助蛋白质折叠。近年研究发现,DNAJ家族蛋白与阿尔茨海默病、帕金森病、亨廷顿病、脊髓小脑性共济失调、进行性神经性腓骨肌萎缩症、脊髓性肌萎缩、远端型遗传性运动神经病变、肢带型肌营养不良、神经元蜡样质脂褐质沉积症和特发性震颤等神经退行性疾病的发生和发展有密切关系,如DNAJA1可有效降解亨廷顿蛋白聚集体;DNAJB1可降解蛋白聚集体ataxin-3;DNAJB2能够抑制亨廷顿蛋白聚集体的形成;DNAJB6能够抑制Aβ42和α-突触核蛋白的聚集;DNAJC5可以促进TDP-43、τ蛋白和α-突触核蛋白释放到细胞外空间;与特发性震颤相关的DNAJC13的突变可能阻碍核内体蛋白运输。本文就DNAJ蛋白家族在神经退行性疾病中的作用机制进行综述。

关键词: 分子伴侣热休克蛋白40DNAJ神经退行性疾病蛋白稳态综述    
Abstract:

Molecular chaperones and co-chaperones facilitate the assembly of newly synthesized polypeptides and refolding of unfolded or misfolded proteins, thereby maintaining protein homeostasis in cells. As co-chaperones of the master chaperone heat shock protein (HSP) 70, the HSP40 (DNAJ) proteins are largest chaperone family in eukaryotic cells. They contain a characteristic J-domain which mediates interaction with HSP70, thereby helping protein folding. It is well perceived that protein homeostasis is vital for neuronal health. DNAJ family proteins have been linked to the occurrence and progression of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, spinocerebellar ataxia, Charcot-Marie-Tooth disease, spinal muscular atrophy, distal hereditary motor neuropathy, limb-girdle type muscular dystrophy, neuronal ceroid lipofuscinosis and essential tremor in recent studies. DNAJA1 effectively degrades huntington aggregates; DNAJB1 can degrade protein aggregates ataxin-3; DNAJB2 can inhibit the formation of huntington aggregates; DNAJB6 can inhibit the aggregation of Aβ42 and α-synuclein; DNAJC5 can promote the release of TDP-43, τ protein, and α-synuclein into the extracellular space. Mutations in the essential tremor-associated DNAJC13 gene can prevent endosome protein trafficking. This article reviews the mechanism of DNAJ protein family in neurodegenerative diseases.

Key words: Molecular chaperones    HSP40    DNAJ    Neurodegenerative diseases    Protein homeostasis    Review
收稿日期: 2021-12-31 出版日期: 2022-12-28
CLC:  R741  
基金资助: 国家重点研发计划(2016YFA0501000);国家高层次人才计划(588020-D01907/018)
通讯作者: 王志萍   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何颖慧
王志萍

引用本文:

何颖慧,王志萍. 分子伴侣HSP40/DNAJ蛋白家族及其在神经退行性疾病中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 640-646.

HE Yinghui,WANG Zhiping. The roles of HSP40/DNAJ protein family in neurodegenerative diseases. J Zhejiang Univ (Med Sci), 2022, 51(5): 640-646.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2021-0406        https://www.zjujournals.com/med/CN/Y2022/V51/I5/640

  图 1HSP70-DNAJ复合物辅助蛋白质折叠的分子伴侣模型
33 GREAVESJ, CHAMBERLAINL H. Dual role of the cysteine-string domain in membrane binding and palmitoylation-dependent sorting of the molecular chaperone cysteine-string protein[J]Mol Biol Cell, 2006, 17( 11): 4748-4759.
doi: 10.1091/mbc.e06-03-0183
34 DIEZ-ARDANUYC, GREAVESJ, MUNROK R, et al.A cluster of palmitoylated cysteines are essential for aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis[J]Sci Rep, 2017, 7( 1): 10.
doi: 10.1038/s41598-017-00036-8
35 HUANGQ, ZHANGY F, LIL J, et al.Adult-onset neuronal ceroid lipofuscinosis with a novel DNAJC5 mutation exhibits aberrant protein palmitoylation[J]Front Aging Neurosci, 2022, 829573.
doi: 10.3389/fnagi.2022.829573
36 FONTAINES N, ZHENGD, SABBAGHJ J, et al.DNAJ/HSC70 chaperone complexes control the extracellular release of neurodegenerative‐associated proteins[J]EMBO J, 2016, 35( 14): 1537-1549.
doi: 10.15252/embj.201593489
37 FERNÁNDEZ-CHACÓNR, WÖLFELM, NISHIMUNEH, et al.The synaptic vesicle protein CSPα prevents presynaptic degeneration[J]Neuron, 2004, 42( 2): 237-251.
doi: 10.1016/s0896-6273(04)00190-4
38 WELTONT, CARDOSOF, CARRJ A, et al.Essential tremor[J]Nat Rev Dis Primers, 2021, 7( 1): 83.
doi: 10.1038/s41572-021-00314-w
39 VILARIÑO-GÜELLC, RAJPUTA, MILNERWOODA J, et al.DNAJC13 mutations in Parkinson disease[J]Hum Mol Genet, 2014, 23( 7): 1794-1801.
doi: 10.1093/hmg/ddt570
40 RAJPUTA, ROSSJ P, BERNALESC Q, et al.VPS35 and DNAJC13 disease-causing variants in essential tremor[J]Eur J Hum Genet, 2015, 23( 6): 887-888.
doi: 10.1038/ejhg.2014.164
41 ROSSJ P, DUPREN, DAUVILLIERSY, et al.Analysis of DNAJC13 mutations in French-Canadian/French cohort of Parkinson’s disease[J]Neurobiol Aging, 2016, 212.e13-212.e17.
doi: 10.1016/j.neurobiolaging.2016.04.023
1 ZHOUJ, JANGILIP, SONS, et al.Fluorescent diagnostic probes in neurodegenerative diseases[J/OL]Adv Mater, 2020, 32( 51): e2001945.
doi: 10.1002/adma.202001945
2 BROWND G, WOBSTH J. Opportunities and challenges in phenotypic screening for neurodegenerative disease research[J]J Med Chem, 2020, 63( 5): 1823-1840.
doi: 10.1021/acs.jmedchem.9b00797
3 PEMBERTONS, MADIONAK, PIERIL, et al.HSC70 protein interaction with soluble and fibrillar α-synuclein[J]J Biol Chem, 2011, 286( 40): 34690-34699.
doi: 10.1074/jbc.M111.261321
4 EVERTB O, NALAVADER, JUNGVERDORBENJ, et al.Upregulation of miR-370 and miR-543 is associated with reduced expression of heat shock protein 40 in spinocerebellar ataxia type 3[J/OL]PLoS One, 2018, 13( 8): e0201794.
doi: 10.1371/journal.pone.0201794
5 HASEGAWAT, YOSHIDAS, SUGENON, et al.DNAJ/HSP40 family and parkinson’s disease[J]Front Neurosci, 2017, 743.
doi: 10.3389/fnins.2017.00743
6 YANP, RENJ, ZHANGW, et al.Protein quality control of cell stemness[J]Cell Regen, 2020, 9( 1): 22.
doi: 10.1186/s13619-020-00064-2
7 QIUX B, SHAOY M, MIAOS, et al.The diversity of the DNAJ/HSP40 family, the crucial partners for HSP70 chaperones[J]Cell Mol Life Sci, 2006, 63( 22): 2560-2570.
doi: 10.1007/s00018-006-6192-6
8 DIANEA, ABUNADAH, KHATTABN, et al.Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes[J]Ageing Res Rev, 2021, 101313.
doi: 10.1016/j.arr.2021.101313
9 MOSSERD D, MORIMOTOR I. Molecular chaperones and the stress of oncogenesis[J]Oncogene, 2004, 23( 16): 2907-2918.
doi: 10.1038/sj.onc.1207529
10 ZAROUCHLIOTIC, PARFITTD A, LIW, et al.DNAJ proteins in neurodegeneration: essential and protective factors[J]Phil Trans R Soc Lond B Boil Sci, 2018, 373( 1738): 20160534.
doi: 10.1098/rstb.2016.0534
11 HARTLF U. Molecular chaperones in cellular protein folding[J]Nature, 1996, 381( 6583): 571-580.
doi: 10.1038/381571a0
12 BATESG P, DORSEYR, GUSELLAJ F, et al.Huntington disease[J]Nat Rev Dis Primers, 2015, 1( 1): 15005.
doi: 10.1038/nrdp.2015.5
13 RODRÍGUEZ-GONZÁLEZC, LINS, ARKANS, et al.Co-chaperones DNAJA1 and DNAJB6 are critical for regulation of polyglutamine aggregation[J]Sci Rep, 2020, 10( 1): 8130.
doi: 10.1038/s41598-020-65046-5
14 LIX, LIUH, FISCHHABERP L, et al.Toward therapeutic targets for SCA3: insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance[J]Prog Neurobiol, 2015, 34-58.
doi: 10.1016/j.pneurobio.2015.06.004
15 CHAIY, KOPPENHAFERS L, BONININ M, et al.Analysis of the role of heat shock protein (HSP) molecular chaperones in polyglutamine disease[J]J Neurosci, 1999, 19( 23): 10338-10347.
doi: 10.1523/JNEUROSCI.19-23-10338.1999
16 GESSB, AUER-GRUMBACHM, SCHIRMACHERA, et al.HSJ1-related hereditary neuropathies: novel mutations and extended clinical spectrum[J]Neurology, 2014, 83( 19): 1726-1732.
doi: 10.1212/WNL.0000000000000966
17 SAVERIP, MAGRIS, MADERNAE, et al.DNAJB2 ‐related Charcot‐Marie‐Tooth disease type 2: pathomechanism insights and phenotypic spectrum widening[J]Euro J Neurol, 2022, 29( 7): 2056-2065.
doi: 10.1111/ene.15326
18 LABBADIAJ, NOVOSELOVS S, BETTJ S, et al.Suppression of protein aggregation by chaperone modification of high molecular weight complexes[J]Brain, 2012, 135( 4): 1180-1196.
doi: 10.1093/brain/aws022
19 WESTHOFFB, CHAPPLEJ P, VAN DER SPUYJ, et al.HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome[J]Curr Biol, 2005, 15( 11): 1058-1064.
doi: 10.1016/j.cub.2005.04.058
20 SCHNAIDERT, SŐTIC, CHEETHAMM E, et al.Interaction of the human DNAJ homologue, HSJ1b with the 90 kDa heat shock protein, Hsp90[J]Life Sci, 2000, 67( 12): 1455-1465.
doi: 10.1016/S0024-3205(00)00735-9
21 OTTAVIANID, MARINO, ARRIGONIG, et al.Protein kinase CK2 modulates HSJ1 function through phosphorylation of the UIM2 domain[J]Hum Mol Genet, 2017, 26( 3): 611-623.
doi: 10.1093/hmg/ddw420
22 GROENE J N, TALBOTK, GILLINGWATERT H. Advances in therapy for spinal muscular atrophy: promises and challenges[J]Nat Rev Neurol, 2018, 14( 4): 214-224.
doi: 10.1038/nrneurol.2018.4
23 SANCHEZE, DARVISHH, MESIASR, et al.Identification of a large DNAJB2 deletion in a family with spinal muscular atrophy and Parkinsonism[J]Hum Mutat, 2016, 37( 11): 1180-1189.
doi: 10.1002/humu.23055
24 CHAPPLEJ P, CHEETHAMM E. The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation[J]J Biol Chem, 2003, 278( 21): 19087-19094.
doi: 10.1074/jbc.M212349200
25 BLUMENS C, ASTORDS, ROBINV, et al.A rare recessive distal hereditary motor neuropathy with HSJ1 chaperone mutation[J]Ann Neurol, 2012, 71( 4): 509-519.
doi: 10.1002/ana.22684
26 LIUM, XUY, HONGD, et al.DNAJB2 c.184C>T mutation associated with distal hereditary motor neuropathy with rimmed vacuolar myopathy[J]Clin Neuropathol, 2022, 41( 9): 226-232.
doi: 10.5414/NP301466
27 GOEDERTM, COMPSTONA. Parkinson’s disease —— the story of an eponym[J]Nat Rev Neurol, 2018, 14( 1): 57-62.
doi: 10.1038/nrneurol.2017.165
28 HUSSEINR M, HASHEMR M, RASHEDL A. Evaluation of the amyloid beta-GFP fusion protein as a model of amyloid beta peptides-mediated aggregation: a study of DNAJB6 chaperone[J]Front Mol Neurosci, 2015, 40.
doi: 10.3389/fnmol.2015.00040
29 DESHAYESN, ARKANS, HANSENC. The molecular chaperone DNAJB6, but not DNAJB1, suppresses the seeded aggregation of alpha-synuclein in cells[J]Int J Mol Sci, 2019, 20( 18): 4495.
doi: 10.3390/ijms20184495
30 ARKANS, LJUNGBERGM, KIRIKD, et al.DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson’s disease[J]Neurobiol Dis, 2021, 105477.
doi: 10.1016/j.nbd.2021.105477
31 THOMPSONR, STRAUBV. Limb-girdle muscular dystrophies —— international collaborations for translational research[J]Nat Rev Neurol, 2016, 12( 5): 294-309.
doi: 10.1038/nrneurol.2016.35
[1] 王晓杰,惠琦,金子,饶凤琴,余丙洁,靳磊,BANDA Joshua,李校堃. 细胞因子类药物在眼科临床的应用进展[J]. 浙江大学学报(医学版), 2022, 51(5): 626-633.
[2] 毛宝杰,王明,万曙. 血小板衍生生长因子及其受体在脑出血中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 634-639.
[3] 李曼,程倩倩,王效静,杨燕. 恶性肿瘤新靶标PHF5A的研究现状及治疗展望[J]. 浙江大学学报(医学版), 2022, 51(5): 647-655.
[4] 吴雪青,于捷,谈贝,陈忠. 开窍中药在神经病理性疼痛治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2022, 51(5): 523-533.
[5] 王晓杰,惠琦,金子,饶凤琴,靳磊,余丙洁,BANDA Joshua,李校堃. 生长因子在眼的发育及眼部疾病调控中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 613-625.
[6] 李芸,陈新. T淋巴细胞体外发育方法的研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 491-499.
[7] 周璐佳,梁景岩,熊天庆. 间充质干细胞来源的外泌体调节缺血性脑卒中后炎症反应的研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 500-506.
[8] 袁伟,张世忠,主鸿鹄. FLT3抑制剂治疗急性髓系白血病患者研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 507-514.
[9] 薛初晴,傅君芬. 生长激素以外的促生长疗法研究进展[J]. 浙江大学学报(医学版), 2022, 51(4): 515-520.
[10] 邹杰林,毛靖,石鑫. 牙髓-牙本质复合体再生的影响因素及其生物学策略[J]. 浙江大学学报(医学版), 2022, 51(3): 350-361.
[11] 孙萍萍,邹炜. 活细胞RNA成像技术及其在生物医学中应用研究进展[J]. 浙江大学学报(医学版), 2022, 51(3): 362-372.
[12] 邵玥明,荀静娜,陈军,卢洪洲. 人类免疫缺陷病毒感染早期启动抗逆转录病毒治疗的意义[J]. 浙江大学学报(医学版), 2022, 51(3): 373-379.
[13] 杨朝森,张晓明. 囊泡转运在肌萎缩侧索硬化中的作用研究进展[J]. 浙江大学学报(医学版), 2022, 51(3): 380-387.
[14] 刘志超,钱周旸,王英男,王慧明. 程序性坏死在骨关节炎病理机制和治疗中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 261-265.
[15] 李健宜,佟丹丹,林俊生. 恶性肿瘤饥饿疗法研究现状[J]. 浙江大学学报(医学版), 2022, 51(2): 241-250.