Please wait a minute...
浙江大学学报(医学版)  2022, Vol. 51 Issue (3): 350-361    DOI: 10.3724/zdxbyxb-2022-0046
综述     
牙髓-牙本质复合体再生的影响因素及其生物学策略
邹杰林1,2,3,毛靖1,2,3,*(),石鑫1,2,3,*()
1.华中科技大学同济医学院附属同济医院口腔医学中心,湖北 武汉 430030
2.华中科技大学同济医学院口腔医学院,湖北 武汉 430030
3.口腔颌面发育与再生湖北省重点实验室,湖北 武汉 430022
Influencing factors of pulp-dentin complex regeneration and related biological strategies
ZOU Jielin1,2,3,MAO Jing1,2,3,*(),SHI Xin1,2,3,*()
1. Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
2. School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
3. Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
 全文: PDF(2476 KB)   HTML( 7 )
摘要:

再生性牙髓治疗利用组织工程方法修复缺损牙本质和牙髓组织,再生具有正常生理功能的牙髓-牙本质复合体,以期恢复牙髓的血管神经化和免疫功能并重建管样牙本质。显著影响再生性牙髓治疗效能的因素包括干细胞、生物信号分子和生物支架材料。根据是否来自牙源性组织,干细胞可分为牙源性干细胞(如牙髓干细胞)和非牙源性干细胞(如骨髓间充质干细胞)。鉴于干细胞具有倾向分化为其原始来源组织的特性,牙源性干细胞在再生性牙髓治疗中展现出一定优势。联合应用多种信号分子并通过激活信号转导通路如Wnt/β-catenin、BMP/Smad,对改善干细胞迁移、增殖、成牙本质细胞分化和血管神经再生潜能发挥关键作用。适用于再生性牙髓治疗的生物支架材料包括自然来源材料和人工合成材料,人工合成材料应模仿天然组织进行生物仿生修饰,以营造适宜的再生微环境并实现对信号转导通路的时空调控。牙髓-牙本质复合体再生的真正实现有赖于干细胞移植和干细胞归巢两大策略。干细胞归巢策略因可避免干细胞的体外分离和培养而在临床操作上更具优势,但如何提高干细胞归巢成功率并促进其增殖和分化以实现牙髓-牙本质复合体真正再生仍有待解决。本文介绍了诱导牙髓-牙本质复合体再生的影响因素,探讨其科学、可行的生物学策略,并展望再生性牙髓治疗未来的研究方向,以期为再生性牙髓治疗临床转化和推广应用提供参考。

关键词: 牙髓-牙本质复合体再生干细胞生物信号分子生物支架材料细胞移植细胞归巢综述    
Abstract:

Regenerative endodontic therapy (RET) utilizing tissue engineering approach can promote the regeneration of pulp-dentin complex to restore pulp vascularization, neuralization, immune function and tubular dentin, therefore the regenerated pulp-dentin complex will have normal function. Multiple factors may significantly affect the efficacy of RET, including stem cells, biosignaling molecules and biomaterial scaffolds. Stem cells derived from dental tissues (such as dental pulp stem cells) exhibit certain advantages in RET. Combined application of multiple signaling molecules and activation of signal transduction pathways such as Wnt/β-catenin and BMP/Smad play pivotal roles in enhancing the potential of stem cell migration, proliferation, odontoblastic differentiation, and nerve and blood vessel regeneration. Biomaterials suitable for RET include naturally-derived materials and artificially synthetic materials. Artificially synthetic materials should imitate natural tissues for biomimetic modification in order to realize the temporal and spatial regulation of pulp-dentin complex regeneration. The realization of pulp-dentin complex regeneration depends on two strategies: stem cell transplantation and stem cell homing. Stem cell homing strategy does not require the isolation and culture of stem cells in vitro, so is better for clinical application. However, in order to achieve the true regeneration of pulp-dentin complex, problems related to improving the success rate of stem cell homing and promoting their proliferation and differentiation need to be solved. This article reviews the influencing factors of pulp-dentin complex regeneration and related biological strategies, and discusses the future research direction of RET, to provide reference for clinical translation and application of RET.

Key words: Pulp-dentin complex regeneration    Stem cells    Biosignaling molecule    Biomaterial scaffold    Cell transplantation    Cell homing    Review
收稿日期: 2022-02-17 出版日期: 2022-09-21
CLC:  R318  
基金资助: 中华口腔医学会中西部口腔正畸临床研究项目(CSA‐MW02021‐03);口腔颌面发育与再生湖北省重点实验室开放基金(2020kqhm002)
通讯作者: 毛靖,石鑫     E-mail: dentxin@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹杰林
毛靖
石鑫

引用本文:

邹杰林,毛靖,石鑫. 牙髓-牙本质复合体再生的影响因素及其生物学策略[J]. 浙江大学学报(医学版), 2022, 51(3): 350-361.

ZOU Jielin,MAO Jing,SHI Xin. Influencing factors of pulp-dentin complex regeneration and related biological strategies. J Zhejiang Univ (Med Sci), 2022, 51(3): 350-361.

链接本文:

https://www.zjujournals.com/med/CN/10.3724/zdxbyxb-2022-0046        https://www.zjujournals.com/med/CN/Y2022/V51/I3/350

1 刘斌, 梁景平. 牙髓再生的临床应用与未来[J]. 中华口腔医学杂志, 2020, 55 (1): 50-55
LIU Bin, LIANG Jingping. Regenerative endodontics:clinical application status and future perspective[J]. Chinese Journal of Stomatology, 2020, 55(1): 50-55. (in Chinese)
2 凌均棨, 毛剑. 牙髓再生的研究现状与发展前景[J]. 中华口腔医学杂志, 2018, 53(6): 361-366
LING Junqi, MAO Jian. State of the art and perspective of pulp regeneration[J]. Chinese Journal of Stomatology, 2018, 53(6): 361-366. (in Chinese)
3 OSTBY B N. The role of the blood clot in endodontic therapy. An experimental histologic study[J]. Acta Odontol Scand, 1961, 19: 324-353
4 IWAYAS I, IKAWAM, KUBOTAM. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract[J]Dent Traumatol, 2001, 17( 4): 185-187.
doi: 10.1034/j.1600-9657.2001.017004185.x
5 BANCHSF, TROPEM. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol?[J]J Endods, 2004, 30( 4): 196-200.
doi: 10.1097/00004770-200404000-00003
6 SHIX, MAOJ, LIUY. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications[J]Stem Cells Transl Med, 2020, 9( 4): 445-464.
doi: 10.1002/sctm.19-0398
7 TORABINEJADM, FARASH, CORRR, et al.Histologic examinations of teeth treated with 2 scaffolds: a pilot animal investigation[J]J Endods, 2014, 40( 4): 515-520.
doi: 10.1016/j.joen.2013.12.025
8 MARTING, RICUCCID, GIBBSJ L, et al.Histological findings of revascularized/revitalized immature permanent molar with apical periodontitis using platelet-rich plasma[J]J Endods, 2013, 39( 1): 138-144.
doi: 10.1016/j.joen.2012.09.015
9 BECERRAP, RICUCCID, LOGHINS, et al.Histologic study of a human immature permanent premolar with chronic apical abscess after revascularization/revitalization[J]J Endods, 2014, 40( 1): 133-139.
doi: 10.1016/j.joen.2013.07.017
10 SABBAGHJ, GHASSIBE-SABBAGHM, FAYYAD-KAZANM, et al.Differences in osteogenic and odontogenic differentiation potential of DPSCs and SHED[J]J Dent, 2020, 103413.
doi: 10.1016/j.jdent.2020.103413
11 HILKENSP, BRONCKAERSA, RATAJCZAKJ, et al.The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration[J]Stem Cells Int, 2017, 2582080.
doi: 10.1155/2017/2582080
12 ITOHY, SASAKIJ I, HASHIMOTOM, et al.Pulp regeneration by 3-dimensional dental pulp stem cell constructs[J]J Dent Res, 2018, 97( 10): 1137-1143.
doi: 10.1177/0022034518772260
13 ZHUX, LIUJ, YUZ, et al.A miniature swine model for stem cell-based de novo regeneration of dental pulp and dentin-like tissue[J]Tissue Eng Part C-Methods, 2018, 24( 2): 108-120.
doi: 10.1089/ten.tec.2017.0342
14 杨剑珍, 欧阳勇, 廖志清. 去髓年轻恒牙牙髓组织再生的动物实验[J]. 中华口腔医学杂志, 2011, 46(8): 489-493
YANG Jianzhen, OUYANG Yong, LIAO Zhiqing. Experimental study on pulp revitalization of beagle dog’s immature permanent teeth after pulpectomy[J]. Chinese Journal of Stomatology, 2011, 46(8): 489-493. (in Chinese)
15 MEZAG, URREJOLAD, SAINT JEANN, et al.Personalized cell therapy for pulpitis using autologous dental pulp stem cells and leukocyte platelet-rich fibrin: a case report[J]J Endods, 2019, 45( 2): 144-149.
doi: 10.1016/j.joen.2018.11.009
16 NAKASHIMAM, IOHARAK, MURAKAMIM, et al.Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study[J]Stem Cell Res Ther, 2017, 8( 1): 61.
doi: 10.1186/s13287-017-0506-5
17 NAKASHIMAM, IOHARAK. Recent progress in translation from bench to a pilot clinical study on total pulp regeneration[J]J Endods, 2017, 43( 9): S82-S86.
doi: 10.1016/j.joen.2017.06.014
18 ABBASO L, ÖZATIKO, GÖNENZ B, et al.Comparative analysis of mesenchymal stem cells from bone marrow, adipose tissue, and dental pulp as sources of cell therapy for zone of stasis burns[J]J Investig Surg, 2019, 32( 6): 477-490.
doi: 10.1080/08941939.2018.1433254
19 LEWW Z, HUANGY C, HUANGK Y, et al.Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism[J]J Tissue Eng Regen Med, 2018, 12( 1): 19-29.
doi: 10.1002/term.2333
20 RAOR R, STEGEMANNJ P. Cell-based approaches to the engineering of vascularized bone tissue[J]Cytotherapy, 2013, 15( 11): 1309-1322.
doi: 10.1016/j.jcyt.2013.06.005
21 MURAKAMIM, HAYASHIY, IOHARAK, et al.Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration[J]Cell Transplant, 2015, 24( 9): 1753-1765.
doi: 10.3727/096368914x683502
22 HUANGC, BAOL, LINT, et al.Proliferation and odontogenic differentiation of human umbilical cord mesenchymal stem cells and human dental pulp cells co-cultured in hydrogel[J]Arch Oral Biol, 2020, 104582.
doi: 10.1016/j.archoralbio.2019.104582
23 ZHANGS, ZHANGW, LIY, et al.Human umbilical cord mesenchymal stem cell differentiation into odontoblast-like cells and endothelial cells: a potential cell source for dental pulp tissue engineering[J]Front Physiol, 2020, 593.
doi: 10.3389/fphys.2020.00593
24 CHENY, YUY, CHENL, et al.Human umbilical cord mesenchymal stem cells: a new therapeutic option for tooth regeneration[J]Stem Cells Int, 2015, 549432.
doi: 10.1155/2015/549432
25 CORDEROC B, SANTANDERG M, GONZÁLEZD U, et al.Allogeneic cellular therapy in a mature tooth with apical periodontitis and accidental root perforation: a case report[J]J Endods, 2020, 46( 12): 1920-1927.e1.
doi: 10.1016/j.joen.2020.04.007
26 LIANGC, LIAOL, TIANW. Stem cell‐based dental pulp regeneration: insights from signaling pathways[J]Stem Cell Rev Rep, 2021, 17( 4): 1251-1263.
doi: 10.1007/s12015-020-10117-3
27 KIMD S, JUES S, LEES Y, et al.Effects of glutamine on proliferation, migration, and differentiation of human dental pulp cells[J]J Endods, 2014, 40( 8): 1087-1094.
doi: 10.1016/j.joen.2013.11.023
28 PANS, DANGARIAS, GOPINATHANG, et al.SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling——potential applications as a homing factor in dental pulp regeneration[J]Stem Cell Rev Rep, 2013, 9( 5): 655-667.
doi: 10.1007/s12015-013-9442-7
29 SUZUKIT, LEEC H, CHENM, et al.Induced migration of dental pulp stem cells for in vivo pulp regeneration[J]J Dent Res, 2011, 90( 8): 1013-1018.
doi: 10.1177/0022034511408426
30 LIUJ Y, CHENX, YUEL, et al.CXC chemokine receptor 4 is expressed paravascularly in apical papilla and coordinates with stromal cell-derived factor-1α during transmigration of stem cells from apical papilla[J]J Endods, 2015, 41( 9): 1430-1436.
doi: 10.1016/j.joen.2015.04.006
31 LIM, SUNX, MAL, et al.SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways[J]Sci Rep, 2017, 7( 1): 40161.
doi: 10.1038/srep40161
32 LIUY, HAND, WANGL, et al.Down-regulation of WNT10A affects odontogenesis and proliferation in mesenchymal cells[J]Biochem Biophysl Res Commun, 2013, 434( 4): 717-721.
doi: 10.1016/j.bbrc.2013.03.088
33 ZHANGZ, GUOQ, TIANH, et al.Effects of WNT10A on proliferation and differentiation of human dental pulp cells[J]J Endods, 2014, 40( 10): 1593-1599.
doi: 10.1016/j.joen.2014.07.009
34 ZHANGX, NINGT, WANGH, et al.Stathmin regulates the proliferation and odontoblastic/osteogenic differentiation of human dental pulp stem cells through Wnt/β-catenin signaling pathway[J]J Proteomics, 2019, 103364.
doi: 10.1016/j.jprot.2019.04.014
35 CHANGY C, CHANGM C, CHENY J, et al.Basic fibroblast growth factor regulates gene and protein expression related to proliferation, differentiation, and matrix production of human dental pulp cells[J]J Endods, 2017, 43( 6): 936-942.
doi: 10.1016/j.joen.2017.01.024
36 LIUN, ZHOUM, ZHANGQ, et al.Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the Wnt signalling pathway[J/OL]Cell Prolif, 2018, 51( 2): e12435.
doi: 10.1111/cpr.12435
37 RAHMANS U, OHJ H, CHOY D, et al.Fibrous topography-potentiated canonical Wnt signaling directs the odontoblastic differentiation of dental pulp-derived stem cells[J]ACS Appl Mater Interfaces, 2018, 10( 21): 17526-17541.
doi: 10.1021/acsami.7b19782
38 IOHARAK, NAKASHIMAM, ITOM, et al.Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2[J]J Dent Res, 2004, 83( 8): 590-595.
doi: 10.1177/154405910408300802
39 WANGW, DANGM, ZHANGZ, et al.Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release[J]Acta Biomater, 2016, 63-72.
doi: 10.1016/j.actbio.2016.03.015
40 WOOS M, KIMW J, LIMH S, et al.Combination of mineral trioxide aggregate and platelet-rich fibrin promotes the odontoblastic differentiation and mineralization of human dental pulp cells via BMP/Smad signaling pathway[J]J Endods, 2016, 42( 1): 82-88.
doi: 10.1016/j.joen.2015.06.019
41 KONGY, HUX, ZHONGY, et al.Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling[J]Stem Cell Res Ther, 2019, 10( 1): 378.
doi: 10.1186/s13287-019-1493-5
42 HEW, WANGZ, LUOZ, et al.LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway[J]J Cell Physiol, 2015, 230( 3): 554-561.
doi: 10.1002/jcp.24732
43 CUID, XIAOJ, ZHOUY, et al.Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway[J/OL]Cell Prolif, 2019, 52( 6): e12680.
doi: 10.1111/cpr.12680
44 GEX, LIZ, JINGS, et al.Parathyroid hormone enhances the osteo/odontogenic differentiation of dental pulp stem cells via ERK and P38 MAPK pathways[J]J Cell Physiol, 2020, 235( 2): 1209-1221.
doi: 10.1002/jcp.29034
45 KATOM, TSUNEKAWAS, NAKAMURAN, et al.Secreted factors from stem cells of human exfoliated deciduous teeth directly activate endothelial cells to promote all processes of angiogenesis[J]Cells, 2020, 9( 11): 2385.
doi: 10.3390/cells9112385
46 GONGT, XUJ, HENGB, et al.EphrinB2/EphB4 signaling regulates DPSCs to induce sprouting angiogenesis of endothelial cells[J]J Dent Res, 2019, 98( 7): 803-812.
doi: 10.1177/0022034519843886
47 XUJ G, GONGT, WANGY Y, et al.Inhibition of TGF-β signaling in SHED enhances endothelial differentiation[J]J Dent Res, 2018, 97( 2): 218-225.
doi: 10.1177/0022034517733741
48 ZOUT, JIANGS, DISSANAYAKAW L, et al.Sema4d/Plexinb1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling[J]J Cell Biochem, 2019, 120( 8): 13614-13624.
doi: 10.1002/jcb.28635
49 ZHANGZ, NÖRF, OHM, et al.Wnt/β-catenin signaling determines the vasculogenic fate of postnatal mesenchymal stem cells[J]Stem Cells, 2016, 34( 6): 1576-1587.
doi: 10.1002/stem.2334
50 YUANC, WANGP, ZHUL, et al.Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro[J]Tissue Eng Part A, 2015, 21( 5-6): 1163-1172.
doi: 10.1089/ten.tea.2014.0058
51 KOLARM K, ITTEV N, KINGHAMP J, et al.The neurotrophic effects of different human dental mesenchymal stem cells[J]Sci Rep, 2017, 7( 1): 12605.
doi: 10.1038/s41598-017-12969-1
52 ZHANGJ, LIANM, CAOP, et al.Effects of nerve growth factor and basic fibroblast growth factor promote human dental pulp stem cells to neural differentiation[J]Neurochem Res, 2017, 42( 4): 1015-1025.
doi: 10.1007/s11064-016-2134-3
53 ZHANGJ, LUX, FENGG, et al.Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy[J]Cell Tissue Res, 2016, 366( 1): 129-142.
doi: 10.1007/s00441-016-2402-1
54 RADDALLG, MELLOI, LEUNGB M. Biomaterials and scaffold design strategies for regenerative endodontic therapy[J]Front Bioeng Biotechnol, 2019, 3137.
doi: 10.3389/fbioe.2019.00317
55 姜世慧, 邹慧儒. 支架材料在牙髓-牙本质复合体再生领域的应用[J]. 中华口腔医学杂志, 2018, 53(11): 784-788
JIANG Shihui, ZOU Huiru. Various scaffolds for dentine-pulp complex regeneration[J]. Chinese Journal of Stomatology, 2018, 53(11): 784-788. (in Chinese)
56 WUS, ZHOUY, YUY, et al.Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells[J]Stem Cells Int, 2019, 1515040.
doi: 10.1155/2019/1515040
57 CHANGB, AHUJAN, MAC, et al.Injectable scaffolds: preparation and application in dental and craniofacial regeneration[J]Mater Sci Eng-R-Rep, 2017, 1-26.
doi: 10.1016/j.mser.2016.11.001
58 GALLERK M, BRANDLF P, KIRCHHOFS, et al.Suitability of different natural and synthetic biomaterials for dental pulp tissue engineering[J]Tissue Eng Part A, 2018, 24( 3-4): 234-244.
doi: 10.1089/ten.tea.2016.0555
59 MOUSSAD G, APARICIOC. Present and future of tissue engineering scaffolds for dentin‐pulp complex regeneration[J]J Tissue Eng Regen Med, 2018, term.2769.
doi: 10.1002/term.2769
60 PÉREZR A, WONJ E, KNOWLESJ C, et al.Naturally and synthetic smart composite biomaterials for tissue regeneration[J]Adv Drug Deliver Rev, 2013, 65( 4): 471-496.
doi: 10.1016/j.addr.2012.03.009
61 SONGW, XIAOY. Sequential drug delivery of vancomycin and rhBMP-2 via pore-closed PLGA microparticles embedded photo-crosslinked chitosan hydrogel for enhanced osteointegration[J]Int J Biol Macromolecules, 2021, 612-625.
doi: 10.1016/j.ijbiomac.2021.03.181
62 XUR, TASKINM B, RUBERTM, et al.hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold[J]Sci Rep, 2015, 5( 1): 8480.
doi: 10.1038/srep08480
63 FANX L, ZHANGY, LIX, et al.Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy[J]Cell Mol Life Sci, 2020, 77( 14): 2771-2794.
doi: 10.1007/s00018-020-03454-6
64 IOHARAK, UTSUNOMIYAS, KOHARAS, et al.Allogeneic transplantation of mobilized dental pulp stem cells with the mismatched dog leukocyte antigen type is safe and efficacious for total pulp regeneration[J]Stem Cell Res Ther, 2018, 9( 1): 116.
doi: 10.1186/s13287-018-0855-8
65 ROSAV, ZHANGZ, GRANDER H M, et al.Dental pulp tissue engineering in full-length human root canals[J]J Dent Res, 2013, 92( 11): 970-975.
doi: 10.1177/0022034513505772
66 NAS, ZHANGH, HUANGF, et al.Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet[J]J Tissue Eng Regen Med, 2016, 10( 3): 261-270.
doi: 10.1002/term.1686
67 XUANK, LIB, GUOH, et al.Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]Sci Transl Med, 2018, 10( 455): eaaf3227.
doi: 10.1126/scitranslmed.aaf3227
68 HUANGC C, NARAYANANR, ALAPATIS, et al.Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration[J]Biomaterials, 2016, 103-115.
doi: 10.1016/j.biomaterials.2016.09.029
69 HEL, ZHOUJ, CHENM, et al.Parenchymal and stromal tissue regeneration of tooth organ by pivotal signals reinstated in decellularized matrix[J]Nat Mater, 2019, 18( 6): 627-637.
doi: 10.1038/s41563-019-0368-6
70 ZHUL, DISSANAYAKAW L, ZHANGC. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration[J]Clin Oral Invest, 2019, 23( 5): 2497-2509.
doi: 10.1007/s00784-018-2699-0
71 ZHANGM, JIANGF, ZHANGX, et al.The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration[J]Stem Cells Transl Med, 2017, 6( 12): 2126-2134.
doi: 10.1002/sctm.17-0033
72 SHI X, JIANG N, MAO J, et al. Mesenchymal stem cell-derived exosomes for organ development and cell-free therapy[J]. , 2021, 2: 1291-1325
73 IVICAA, GHAYORC, ZEHNDERM, et al.Pulp-derived exosomes in a fibrin-based regenerative root filling material[J]J Clin Med, 2020, 9( 2): 491.
doi: 10.3390/jcm9020491
74 HUX, ZHONGY, KONGY, et al.Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/Smads signaling pathway via transfer of microRNAs[J]Stem Cell Res Ther, 2019, 10( 1): 170.
doi: 10.1186/s13287-019-1278-x
75 XIANX, GONGQ, LIC, et al.Exosomes with highly angiogenic potential for possible use in pulp regeneration[J]J Endods, 2018, 44( 5): 751-758.
doi: 10.1016/j.joen.2017.12.024
76 WUM, LIUX, LIZ, et al.SHED aggregate exosomes shuttled miR‐26a promote angiogenesis in pulp regeneration via TGF‐β/SMAD2/3 signalling[J/OL]Cell Prolif, 2021, 54( 7): e13074.
doi: 10.1111/cpr.13074
77 ZHANGJ, ANY, GAOL N, et al.The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells[J]Biomaterials, 2012, 33( 29): 6974-6986.
doi: 10.1016/j.biomaterials.2012.06.032
78 KATSARAO, MAHAIRAL G, ILIOPOULOUE G, et al.Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells[J]Stem Cells Dev, 2011, 20( 9): 1549-1561.
doi: 10.1089/scd.2010.0280
79 KOKAIL E, TRAKTUEVD O, ZHANGL, et al.Adipose stem cell function maintained with age: an intra-subject study of long-term cryopreserved cells[J]Aesthet Surg J, 2017, 37( 4): 454-463.
doi: 10.1093/asj/sjw197
80 DUFRANED. Impact of age on human adipose stem cells for bone tissue engineering[J]Cell Transplant, 2017, 26( 9): 1496-1504.
doi: 10.1177/0963689717721203
81 BRESSANE, FERRONIL, GARDINC, et al.Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds[J/OL]PLoS One, 2012, 7( 11): e49146.
doi: 10.1371/journal.pone.0049146
82 PATEL R S, CARTER G, El BASSIT G, et al. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCdelta) in adipose stem cell niche[J]. , 2016, 3: 2
83 KIMJ Y, XINX, MOIOLIE K, et al.Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing[J]Tissue Eng Part A, 2010, 16( 10): 3023-3031.
doi: 10.1089/ten.tea.2010.0181
84 YANGJ W, ZHANGY F, WANC Y, et al.Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration[J]Biomaterials, 2015, 11-23.
doi: 10.1016/j.biomaterials.2014.12.006
85 HEL, KIMS G, GONGQ, et al.Regenerative endodontics for adult patients[J]J Endods, 2017, 43( 9): S57-S64.
doi: 10.1016/j.joen.2017.06.012
86 ZHANG L X, SHEN L L, GE S H, et al. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing[J]. Int J Clin Exp Pathol, 2015, 8(9): 10261-10271
[1] 刘志超,钱周旸,王英男,王慧明. 程序性坏死在骨关节炎病理机制和治疗中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 261-265.
[2] 李健宜,佟丹丹,林俊生. 恶性肿瘤饥饿疗法研究现状[J]. 浙江大学学报(医学版), 2022, 51(2): 241-250.
[3] 叶柏新,胡永仙,张明明,黄河. 脂质纳米粒-mRNA递送系统及其在嵌合抗原受体T细胞治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 185-191.
[4] 刘娇,涂晓璇,刘璐璐,方维佳. 嵌合抗原受体T细胞治疗恶性实体瘤新进展[J]. 浙江大学学报(医学版), 2022, 51(2): 175-184.
[5] 胡珂嘉,黄玥,胡永仙,黄河. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤研究进展[J]. 浙江大学学报(医学版), 2022, 51(2): 192-203.
[6] 张少琪,孙洁. 纳米药物递送系统在急性髓细胞性白血病治疗中的应用[J]. 浙江大学学报(医学版), 2022, 51(2): 233-240.
[7] 邢敬慈,揭伟. 甲基转移酶SET结构域家族及其在心血管发育和疾病中的作用[J]. 浙江大学学报(医学版), 2022, 51(2): 251-260.
[8] 汪文妮,陈超群,顾新华. 磁性纳米粒子复合支架及外加磁场影响成骨作用的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 102-107.
[9] 边梦瑶,陈莉丽,雷利红. 慢性牙周炎与帕金森病相关性的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 108-114.
[10] 金群,黄丽华. 神经认知障碍患者多成分运动干预的研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 38-46.
[11] 刘德坤,刘佳丽,张丹,杨雯晴. 细胞衰老与动脉粥样硬化的相关研究进展[J]. 浙江大学学报(医学版), 2022, 51(1): 95-101.
[12] 钱晨宏,蒋烈浩,许世莹,王佳峰,谭卓,忻莹,葛明华. 甲状腺未分化癌靶向治疗研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 685-693.
[13] 周靖,王艳,徐恩萍. 微单倍型在法医遗传学中的研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 777-782.
[14] 任渊,崔戈丹,高永翔. 原发性干燥综合征患者颌下腺炎症反应机制研究进展[J]. 浙江大学学报(医学版), 2021, 50(6): 783-794.
[15] 卢茜璇,包黎莎,潘宗富,葛明华. 甲状腺未分化癌免疫治疗的现状及未来[J]. 浙江大学学报(医学版), 2021, 50(6): 675-684.