专题报道 |
|
|
|
|
胆固醇代谢与肿瘤 |
孟颖1,2( ),王启扉1,2,吕志民1,2,*( ) |
1.浙江大学医学院附属第一医院肝胆胰外科 浙江省胰腺疾病重点实验室,浙江 杭州 310003 2.浙江大学医学院转化医学研究院,浙江 杭州 310029 |
|
Cholesterol metabolism and tumor |
MENG Ying1,2( ),WANG Qifei1,2,LYU Zhimin1,2,*( ) |
1. Zhejiang Provincial Key Laboratory of Pancreatic Disease,Department of Hepatobiliary and Pancreatic Surgery,the First Affiliated Hospital,Zhejiang University School of Medicine,Hangzhou 310003,China; 2. Institute of Translational Medicine,Zhejiang University School of Medicine,Hangzhou 310029,China |
1 |
BROWN M S, RADHAKRISHNAN A, GOLDSTEIN J L . Retrospective on cholesterol homeostasis:the central role of scap[J]. Annu Rev Biochem, 2018, 87(1): 783-807.
doi: 10.1146/annurev-biochem-062917-011852
|
2 |
IKONEN E . Mechanisms for cellular cholesterol transport:defects and human disease[J]. Physiol Rev, 2006, 86(4): 1237-1261.
doi: 10.1152/physrev.00022.2005
|
3 |
YOSHIOKA Y,SASAKI J,YAMAMOTO M,et al.Quantitation by (1)H-NMR of dolichol,cholesterol and choline-containing lipids in extracts of normal and phathological thyroid tissue[J]. NMR Biomed,2000,13(7):377–383.DOI:10.1002/1099-1492(200011)13:7<377::aid-nbm658>3.0.co;2-e .
|
4 |
LISCUM L, FINER-MOORE J, STROUD R M, et al. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase,a glycoprotein of the endop- lasmic reticulum[J]. J Biol Chem, 1985, 260(1): 522-530.
doi: 10.1016/S0021-9258(18)89764-2
|
5 |
KO C W, QU J, BLACK D D, et al. Regulation of intestinal lipid metabolism:current concepts and relevance to disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(3): 169-183.
doi: 10.1038/s41575-019-0250-7
|
6 |
NELSON J K, KOENIS D S, SCHEIJ S, et al. EEPD1 Is a novel LXR target gene in macrophages which regulates ABCA1 abundance and cholesterol efflux[J]. Arterioscler Thromb Vasc Biol, 2017, 37(3): 423-432.
doi: 10.1161/ATVBAHA.116.308434
|
7 |
MENG Y, HEYBROCK S, NECULAI D, et al. Cholesterol handling in lysosomes and beyond[J]. Trends Cell Biol, 2020, 30(6): 452-466.
doi: 10.1016/j.tcb.2020.02.007
|
8 |
BROWN M S, GOLDSTEIN J L . A receptor-mediated pathway for cholesterol homeostasis[J]. Science, 1986, 232(4746): 34-47.
doi: 10.1126/science.3513311
|
9 |
MEYER J M, GRAF G A, VAN DER WESTHUYZEN D R . New developments in selective cholesteryl ester uptake[J]. Curr Opin Lipidology, 2013, 24(5): 386-392.
doi: 10.1097/MOL.0b013e3283638042
|
10 |
DAS A, BROWN M S, ANDERSON D D, et al. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis [J/OL]. eLife, 2014, e02882.
doi: 10.7554/eLife.02882
|
11 |
GOLDSTEIN J L, BROWN M S . The LDL receptor[J]. ATVB, 2009, 29(4): 431-438.
doi: 10.1161/ATVBAHA.108.179564
|
12 |
LUO J, YANG H, SONG B L . Mechanisms and regulation of?cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245.
doi: 10.1038/s41580-019-0190-7
|
13 |
GLASS C, PITTMAN R C, CIVEN M, et al. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro[J] . J Biol Chem, 1985, 260(2): 744-750.
doi: 10.1016/S0021-9258(20)71160-9
|
14 |
GLASS C, PITTMAN R C, WEINSTEIN D B, et al. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein:selective delivery of cholesterol ester to liver,adrenal,and gonad[J]. Proc Natl Acad Sci USA, 1983, 80(17): 5435-5439.
doi: 10.1073/pnas.80.17.5435
|
15 |
NECULAI D, SCHWAKE M, RAVICHANDRAN M, et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36[J]. Nature, 2013, 504(7478): 172-176.
doi: 10.1038/nature12684
|
16 |
HAMPTON R Y . A cholesterol toggle switch[J]. Cell Metab, 2008, 8(6): 451-453.
doi: 10.1016/j.cmet.2008.11.006
|
17 |
HORTON J D, SHAH N A, WARRINGTON J A, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci USA, 2003, 100(21): 12027-12032.
doi: 10.1073/pnas.1534923100
|
18 |
GOLDSTEIN J L, DEBOSE-BOYD R A, BROWN M S . Protein sensors for membrane sterols[J]. Cell, 2006, 124(1): 35-46.
doi: 10.1016/j.cell.2005.12.022
|
19 |
BOVENGA F, SABBà C, MOSCHETTA A . Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer[J]. Cell Metab, 2015, 21(4): 517-526.
doi: 10.1016/j.cmet.2015.03.002
|
20 |
LI C S, WU W, XIE K K, et al. HMGCR is up-regulated in gastric cancer and promotes the growth and migration of the cancer cells[J]. Gene, 2016, 587(1): 42-47.
doi: 10.1016/j.gene.2016.04.029
|
21 |
QIU Z, YUAN W, CHEN T, et al. HMGCR positively regulated the growth and migration of glioblastoma cells[J]. Gene, 2016, 576(1): 22-27.
doi: 10.1016/j.gene.2015.09.067
|
22 |
ASHIDA S, KAWADA C, INOUE K . Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR[J]. Oncol Lett, 2017, 14(6): 6533-6542.
doi: 10.3892/ol.2017.7025
|
23 |
KONG Y, CHENG L, MAO F, et al. Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC)[J]. J Biol Chem, 2018, 293(37): 14328-14341.
doi: 10.1074/jbc.RA118.004442
|
24 |
LEE J S, ROBERTS A, JUAREZ D, et al. Statins enhance efficacy of venetoclax in blood cancers[J]. Sci Transl Med, 2018, 10(445): eaaq1240.
doi: 10.1126/scitranslmed.aaq1240
|
25 |
YANG J, WANG L, JIA R . Role of de novo cholesterol synthesis enzymes in cancer[J] . J Cancer, 2020, 11(7): 1761-1767.
doi: 10.7150/jca.38598
|
26 |
BROWN D N, CAFFA I, CIRMENA G, et al. Squalene epoxidase is a bona fide oncogene by amplification with clinical relevance in breast cancer[J]. Sci Rep, 2016, 6(1): 19435.
doi: 10.1038/srep19435
|
27 |
CIRMENA G, FRANCESCHELLI P, ISNALDI E, et al. Squalene epoxidase as a promising metabolic target in cancer treatment[J]. Cancer Lett, 2018, 13-20.
doi: 10.1016/j.canlet.2018.03.034
|
28 |
LIU D, WONG C C, FU L, et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target [J/OL]. Sci Transl Med, 2018, 10(437): eaap9840.
doi: 10.1126/scitranslmed.aap9840
|
29 |
ZHOU T, ZHAN J, FANG W, et al. Serum low-density lipoprotein and low-density lipoprotein expression level at diagnosis are favorable prognostic factors in patients with small-cell lung cancer (SCLC)[J]. BMC Cancer, 2017, 17(1): 269.
doi: 10.1186/s12885-017-3239-z
|
30 |
GALLAGHER E J, ZELENKO Z, NEEL B A, et al. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia[J]. Oncogene, 2017, 36(46): 6462-6471.
doi: 10.1038/onc.2017.247
|
31 |
GUILLAUMOND F, BIDAUT G, OUAISSI M, et al. Cholesterol uptake disruption,in association with chemotherapy,is a promising combined metabolic therapy for pancreatic adenocarcinoma[J]. Proc Natl Acad Sci USA, 2015, 112(8): 2473-2478.
doi: 10.1073/pnas.1421601112
|
32 |
GUO D, REINITZ F, YOUSSEF M, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway[J]. Cancer Discov, 2011, 1(5): 442-456.
doi: 10.1158/2159-8290.CD-11-0102
|
33 |
YUE S, LI J, LEE S Y, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressi- veness[J]. Cell Metab, 2014, 19(3): 393-406.
doi: 10.1016/j.cmet.2014.01.019
|
34 |
MENARD J A, CHRISTIANSON H C, KUCHARZEWSKA P, et al. Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis[J]. Cancer Res, 2016, 76(16): 4828-4840.
doi: 10.1158/0008-5472.CAN-15-2831
|
35 |
ZELCER N, HONG C, BOYADJIAN R, et al. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor[J]. Science, 2009, 325(5936): 100-104.
doi: 10.1126/science.1168974
|
36 |
AYLON Y, OREN M . The Hippo pathway,p53 and cholesterol[J]. Cell Cycle, 2016, 15(17): 2248-2255.
doi: 10.1080/15384101.2016.1207840
|
37 |
XU D, WANG Z, XIA Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis[J]. Nature, 2020, 580(7804): 530-535.
doi: 10.1038/s41586-020-2183-2
|
38 |
OHTAKI S, WANIBUCHI M, KATAOKA-SASAKI Y, et al. ACTC1 as an invasion and prognosis marker in glioma[J]. JNS, 2017, 126(2): 467-475.
doi: 10.3171/2016.1.JNS152075
|
39 |
IKONEN E . Cellular cholesterol trafficking and compartmentalization[J]. Nat Rev Mol Cell Biol, 2008, 9(2): 125-138.
doi: 10.1038/nrm2336
|
40 |
LIN C Y, GUSTAFSSON J ? . Targeting liver X receptors in cancer therapeutics[J]. Nat Rev Cancer, 2015, 15(4): 216-224.
doi: 10.1038/nrc3912
|
41 |
TAO R, XIONG X, DEPINHO R A, et al. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6[J]. J Lipid Res, 2013, 54(10): 2745-2753.
doi: 10.1194/jlr.M039339
|
42 |
FLAVENY C A, GRIFFETT K, EL-GENDY B E D M, et al. Broad anti-tumor activity of a small molecule that selectively targets the warburg effect and lipogenesis[J]. Cancer Cell, 2015, 28(1): 42-56.
doi: 10.1016/j.ccell.2015.05.007
|
43 |
RIOLS F,BERTRAND-MICHEL J. Analysis of oxysterols[J]. Methods Mol Biol,2018,1730:267-275.DOI:10.1007/978-1-4939-7592-1_19 .
|
44 |
CHEN J, YE Y, LIU P, et al. Suppression of T cells by myeloid-derived suppressor cells in cancer[J]. Human Immunol, 2017, 78(2): 113-119.
doi: 10.1016/j.humimm.2016.12.001
|
45 |
SAXENA K, SHIPLEY G G . Structural studies of detergent-solubilized and vesicle-reconstituted low-density lipoprotein (LDL) receptor[J]. Biochemi- stry, 1997, 36(50): 15940-15948.
doi: 10.1021/bi971579p
|
46 |
SIVAPRASAD U, ABBAS T, DUTTA A . Differential efficacy of 3-hydroxy-3-methylglutaryl CoA reductase inhibitors on the cell cycle of prostate cancer cells[J]. Mol Cancer Ther, 2006, 5(9): 2310-2316.
doi: 10.1158/1535-7163.MCT-06-0175
|
47 |
SONG X, LIU B C, LU X Y, et al. Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression[J]. BBA- Mol Cell Res, 2014, 1843(5): 894-901.
doi: 10.1016/j.bbamcr.2014.02.002
|
48 |
TU Y S, KANG X L, ZHOU J G, et al. Involvement of Chk1–Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells[J]. Eur J Pharmacol, 2011, 670(2-3): 356-364.
doi: 10.1016/j.ejphar.2011.09.031
|
49 |
MENTER D G, RAMSAUER V P, HARIRFOROOSH S, et al. Differential effects of pravastatin and simvastatin on the growth of tumor cells from different organ sites [J/OL]. PLoS One, 2011, 6(12): e28813.
doi: 10.1371/journal.pone.0028813
|
50 |
XIA Y, XIE Y, YU Z, et al. The Mevalonate pathway is a druggable target for vaccine adjuvant discovery [J/OL]. Cell, 2018, 175(4): 1059-1073.e21.
doi: 10.1016/j.cell.2018.08.070
|
51 |
ABDEL-RAHMAN O . Statin treatment and outcomes of metastatic pancreatic cancer:a pooled analysis of two phase Ⅲ studies[J]. Clin Transl Oncol, 2019, 21(6): 810-816.
doi: 10.1007/s12094-018-1992-3
|
52 |
BR?NVALL E, EKBERG S, ELORANTA S, et al. Statin use is associated with improved survival in multiple myeloma:A Swedish population‐based study of 4315 patients[J]. Am J Hematol, 2020, 95(6): 652-661.
doi: 10.1002/ajh.25778
|
53 |
CARDWELL C R, HICKS B M, HUGHES C, et al. Statin use after colorectal cancer diagnosis and survival:a population-based cohort study[J]. JCO, 2014, 32(28): 3177-3183.
doi: 10.1200/JCO.2013.54.4569
|
54 |
HAN J Y, LEE S H, YOO N J, et al. A randomized phase II study of gefitinib plus simvastatin versus gefitinib alone in previously treated patients with advanced non-small cell lung cancer[J]. Clin Cancer Res, 2011, 17(6): 1553-1560.
doi: 10.1158/1078-0432.CCR-10-2525
|
55 |
LEE Y, LEE K H, LEE G K, et al. Randomized phase Ⅱ study of afatinib plus simvastatin versus afatinib alone in previously treated patients with advanced nonadenocarcinomatous non-small cell lung cancer[J]. Cancer Res Treat, 2017, 49(4): 1001-1011.
doi: 10.4143/crt.2016.546
|
56 |
DUNCAN R E, EL-SOHEMY A, ARCHER M C . Statins and the risk of cancer[J]. JAMA, 2006, 295(23): 2720.
doi: 10.1001/jama.295.23.2720-a
|
57 |
KIM S T, KANG J H, LEE J, et al. Simvastatin plus capecitabine–cisplatin versus placebo plus capecita- bine–cisplatin in patients with previously untreated advanced gastric cancer:A double-blind randomised phase 3 study[J]. Eur J Cancer, 2014, 50(16): 2822-2830.
doi: 10.1016/j.ejca.2014.08.005
|
58 |
FARMER J A. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis (the SEAS trial)[J]. Curr Atheroscler Rep,2009,11(2):82–83 .
|
59 |
JOSEPH L, ROBINSON J G . Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and the future of lipid lowering therapy[J]. Prog Cardio- vascular Dis, 2015, 58(1): 19-31.
doi: 10.1016/j.pcad.2015.04.004
|
60 |
NOWAK C, ?RNL?V J . A Mendelian randomization study of the effects of blood lipids on breast cancer risk[J]. Nat Commun, 2018, 9(1): 3957.
doi: 10.1038/s41467-018-06467-9
|
61 |
REVILLA G, CEDó L, TONDO M, et al. LDL,HDL and endocrine-related cancer:From pathogenic mechanisms to therapies[J/OL]. Seminars Cancer Biol, 2020,
doi: 10.1016/j.semcancer.2020.11.012
|
62 |
LINCOFF A M, NICHOLLS S J, RIESMEYER J S, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease[J]. N Engl J Med, 2017, 376(20): 1933-1942.
doi: 10.1056/NEJMoa1609581
|
63 |
SCHWARTZ G G, OLSSON A G, ABT M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome[J]. N Engl J Med, 2012, 367(22): 2089-2099.
doi: 10.1056/NEJMoa1206797
|
64 |
BARTER P J, CAULFIELD M, ERIKSSON M, et al. Effects of torcetrapib in patients at high risk for coronary events[J]. N Engl J Med, 2007, 357(21): 2109-2122.
doi: 10.1056/NEJMoa0706628
|
65 |
BOWMAN L, HOPEWELL J C, CHEN F, et al. effects of anacetrapib in patients with atherosclerotic vascular disease[J]. N Engl J Med, 2017, 377(13): 1217-1227.
doi: 10.1056/NEJMoa1706444
|
66 |
Kamanna S V, Kashyap L M . Mechanism of action of niacin[J]. Am J Cardiology, 2008, 101(8): S20-S26.
doi: 10.1016/j.amjcard.2008.02.029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|