原著 |
|
|
|
|
基于监测数据的药物不良反应快速识别及R语言实现 |
洪东升1,2( ),倪剑2,3,单文雅1,2,李璐1,2,胡希1,2,羊红玉1,2,赵青威2,*( ),张幸国1,*( ) |
1. 浙江大学医学院附属第一医院药学部, 浙江 杭州 310003 2. 浙江省药物临床研究与评价技术重点实验室, 浙江 杭州 310003 3. 浙江大学医学院附属第一医院信息中心, 浙江 杭州 310003 |
|
Establishment of a rapid identification of adverse drug reaction program in R language implementation based on monitoring data |
HONG Dongsheng1,2( ),NI Jian2,3,SHAN Wenya1,2,LI Lu1,2,HU Xi1,2,YANG Hongyu1,2,ZHAO Qingwei2,*( ),ZHANG Xingguo1,*( ) |
1. Department of Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China 2. Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China 3. Information Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China |
引用本文:
洪东升,倪剑,单文雅,李璐,胡希,羊红玉,赵青威,张幸国. 基于监测数据的药物不良反应快速识别及R语言实现[J]. 浙江大学学报(医学版), 2020, 49(2): 253-259.
HONG Dongsheng,NI Jian,SHAN Wenya,LI Lu,HU Xi,YANG Hongyu,ZHAO Qingwei,ZHANG Xingguo. Establishment of a rapid identification of adverse drug reaction program in R language implementation based on monitoring data. J Zhejiang Univ (Med Sci), 2020, 49(2): 253-259.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.03.07
或
http://www.zjujournals.com/med/CN/Y2020/V49/I2/253
|
1 |
GUAN W J , NI ZY , HU Y et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020,
doi: 10.1056/NEJMoa2002032
|
2 |
PARASRAMPURIA D A , BENET L Z , SHARMA A . Why drugs fail in late stages of development: case study analyses from the last decade and recommendations[J]. AAPS J, 2018, 20 (3): 46
doi: 10.1208/s12248-018-0204-y
|
3 |
LONERGAN M , SENN S J , MCNAMEE C et al. Defining drug response for stratified medicine[J]. Drug Discov Today, 2017, 22 (1): 173- 179
doi: 10.1016/j.drudis.2016.10.016
|
4 |
PERINO J , MOTTAL N , BOHBOT Y et al. Cardiac failure in patients treated with azacitidine, a pyrimidine analogue: Case reports and disproportionality analyses in Vigibase[J]. Br J Clin Pharmacol, 2020,
doi: 10.1111/bcp.14211
|
5 |
MARWITZ K , JONES S C , KORTEPETER C M et al. An evaluation of postmarketing reports with an outcome of death in the US FDA adverse event reporting system[J]. Drug Saf, 2020,
doi: 10.1007/s40264-020-00908-5
|
6 |
GENTILI M , POZZI M , PEETERS G et al. Review of the methods to obtain paediatric drug safety information: spontaneous reporting and healthcare databases, active surveillance programmes, systematic reviews and meta-analyses[J]. Curr Clin Pharmacol, 2018, 13 (1): 28- 39
doi: 10.2174/1574884713666180206164634
|
7 |
BEHERA S K , DAS S , XAVIER A S et al. Comparison of different methods for causality assessment of adverse drug reactions[J]. Int J Clin Pharm, 2018, 40 (4): 903- 910
doi: 10.1007/s11096-018-0694-9
|
8 |
BATE A . Bayesian confidence propagation neural network[J]. Drug Saf, 2007, 30 (7): 623- 625
doi: 10.2165/00002018-200730070-00011
|
9 |
KUMAR A , AHUJA J , SHRIVASTAVA TP et al. Statistical signal process in R language in the pharmacovigilance programme of India[J]. Ther Innov Regul Sci, 2018, 52 (3): 329- 333
doi: 10.1177/2168479017728988
|
10 |
TUBERT-BITTER P , BéGAUD B , AHMED I . Comparison of two drug safety signals in a pharmacovigilance data mining framework[J]. Stat Methods Med Res, 2016, 25 (2): 615- 629
doi: 10.1177/0962280212462295
|
11 |
TRIPPE Z A , BRENDANI B , MEIER C et al. Identification of substandard medicines via disproportionality analysis of individual case safety reports[J]. Drug Saf, 2017, 40 (4): 293- 303
doi: 10.1007/s40264-016-0499-5
|
12 |
AHMED I , THIESSARD F , MIREMONT-SALAMé G et al. Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study[J]. Drug Saf, 2012, 35 (6): 495- 506
doi: 10.2165/11597180-000000000-00000
|
13 |
TIMBROOK T T , MCKAY L , SUTTON J D et al. Disproportionality analysis of safety with nafcillin and oxacillin with the FDA Adverse Event Reporting System (FAERS)[J]. Antimicrob Agents Chemother, 2020, 64 (3):
doi: 10.1128/AAC.01818-19
|
14 |
SAKAEDA T , TAMON A , KADOYAMA K et al. Data mining of the public version of the FDA Adverse Event Reporting System[J]. Int J Med Sci, 2013, 10 (7): 796- 803
doi: 10.7150/ijms.6048
|
15 |
VERDEN A , DIMBIL M , KYLE R et al. Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors[J]. Drug Saf, 2018, 41 (4): 357- 361
doi: 10.1007/s40264-017-0622-2
|
16 |
BROWN E G . Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA)[J]. Drug Saf, 2003, 26 (3): 145- 158
doi: 10.2165/00002018-200326030-00002
|
17 |
WHO. Global Health Observatory (GHO) data[DB/OL].[2020-03-10]. https://www.who.int/gho/database/en/.
|
18 |
MANSUR J M . Medication safety systems and the important role of pharmacists[J]. Drugs Aging, 2016, 33 (3): 213- 221
doi: 10.1007/s40266-016-0358-1
|
19 |
LINDQUIST M . Use of triage strategies in the WHO signal-detection process[J]. Drug Saf, 2007, 30 (7): 635- 637
doi: 10.2165/00002018-200730070-00014
|
20 |
SZARFMAN A , TONNING J M , DORAISWAMY P M . Pharmacovigilance in the 21st century: new systematic tools for an old problem[J]. Pharmacotherapy, 2004, 24 (9): 1099- 1104
doi: 10.1592/phco.24.13.1099.38090
|
21 |
SCHOLL J H , VAN PUIJENBROEK E P . The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands[J]. Pharmacoepidemiol Drug Saf, 2016, 25 (12): 1361- 1367
doi: 10.1002/pds.4115
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|