专题报道 |
|
|
|
|
靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展 |
俞卿1,2( ),熊秀芳1,2,孙毅1,2,*( ) |
1. 浙江大学医学院附属第二医院肿瘤研究所, 浙江 杭州 310009 2. 浙江大学转化医学研究院, 浙江 杭州 310029 |
|
Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery |
YU Qing1,2( ),XIONG Xiufang1,2,SUN Yi1,2,*( ) |
1. Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China 2. Department of Translational Medicine, Zhejiang University, Hangzhou 310029, China |
1 |
HERSHKO A , CIECHANOVER A . The ubiquitin system[J]. Annu Rev Biochem, 1998, 67:425- 479
doi: 10.1146/annurev.biochem.67.1.425
|
2 |
KOMANDER D , RAPE M . The ubiquitin code[J]. Annu Rev Biochem, 2012, 81:203- 229
doi: 10.1146/annurev-biochem-060310-170328
|
3 |
ZHAO Y , SUN Y . Cullin-RING ligases as attractive anti-cancer targets[J]. Curr Pharm Des, 2013, 19 (18): 3215- 3225
doi: 10.2174/13816128113199990300
|
4 |
DESHAIES R J , JOAZEIRO C A . RING domain E3 ubiquitin ligases[J]. Annu Rev Biochem, 2009, 78:399- 434
doi: 10.1146/annurev.biochem.78.101807.093809
|
5 |
ZHENG N , SHABEK N . Ubiquitin ligases:structure, function, and regulation[J]. Annu Rev Biochem, 2017, 86:129- 157
doi: 10.1146/annurev-biochem-060815-014922
|
6 |
DOVE K K , KLEVIT R E . RING-between-RING E3 ligases:emerging themes amid the variations[J]. J Mol Biol, 2017, 429 (22): 3363- 3375
doi: 10.1016/j.jmb.2017.08.008
|
7 |
SOUCY T A , SMITH P G , MILHOLLEN M A et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer[J]. Nature, 2009, 458 (7239): 732- 736
doi: 10.1038/nature07884
|
8 |
RICHARDSON P G , BARLOGIE B , BERENSON J et al. A phase 2 study of bortezomib in relapsed, refractory myeloma[J]. N Engl J Med, 2003, 348 (26): 2609- 2617
doi: 10.1056/NEJMoa030288
|
9 |
SKAAR J R , PAGAN J K , PAGANO M . SCF ubiquitin ligase-targeted therapies[J]. Nat Rev Drug Discov, 2014, 13 (12): 889- 903
doi: 10.1038/nrd4432
|
10 |
SKAAR J R , FLORENS L , TSUTSUMI T et al. PARC and CUL7 form atypical cullin RING ligase complexes[J]. Cancer Res, 2007, 67 (5): 2006- 2014
doi: 10.1158/0008-5472.CAN-06-3241
|
11 |
JIN J , CARDOZO T , LOVERING R C et al. Systematic analysis and nomenclature of mammalian F-box proteins[J]. Genes Dev, 2004, 18 (21): 2573- 2580
doi: 10.1101/gad.1255304
|
12 |
LINOSSI E M , NICHOLSON S E . The SOCS box-adapting proteins for ubiquitination and proteasomal degradation[J]. IUBMB Life, 2012, 64 (4): 316- 323
doi: 10.1002/iub.1011
|
13 |
STOGIOS P J , DOWNS G S , JAUHAL J J et al. Sequence and structural analysis of BTB domain proteins[J]. Genome Biol, 2005, 6 (10):
doi: 10.1186/gb-2005-6-10-r82
|
14 |
HE Y J , MCCALL C M , HU J et al. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases[J]. Genes Dev, 2006, 20 (21): 2949- 2954
doi: 10.1101/gad.1483206
|
15 |
SARIKAS A , HARTMANN T , PAN Z Q . The cullin protein family[J]. Genome Biol, 2011, 12 (4): 220
doi: 10.1186/gb-2011-12-4-220
|
16 |
ZHAO Y , MORGAN M A , SUN Y . Targeting neddylation pathways to inactivate cullin-RING ligases for anticancer therapy[J]. Antioxid Redox Signal, 2014, 21 (17): 2383- 2400
doi: 10.1089/ars.2013.5795
|
17 |
JIA L , SUN Y . SCF E3 ubiquitin ligases as anticancer targets[J]. Curr Cancer Drug Targets, 2011, 11 (3): 347- 356
doi: 10.2174/156800911794519734
|
18 |
DESHAIES R J . SCF and Cullin/Ring H2-based ubiquitin ligases[J]. Annu Rev Cell Dev Biol, 1999, 15:435- 467
doi: 10.1146/annurev.cellbio.15.1.435
|
19 |
SKAAR J R , PAGAN J K , PAGANO M . Mechanisms and function of substrate recruitment by F-box proteins[J]. Nat Rev Mol Cell Biol, 2013, 14 (6): 369- 381
doi: 10.1038/nrm3582
|
20 |
SKAAR J R , D'ANGIOLELLA V , PAGAN J K et al. SnapShot:F box proteins Ⅱ[J]. Cell, 2009, 137:1358
doi: 10.1016/j.cell.2009.05.040
|
21 |
YAN Y , ZHANG X , LEGERSKI R J . Artemis interacts with the Cul4A-DDB1DDB2 ubiquitin E3ligase and regulates degradation of the CDK inhibitor p27[J]. Cell Cycle, 2011, 10:4098- 4109
doi: 10.4161/cc.10.23.18227
|
22 |
TAN M , ZHAO Y , KIM S J et al. SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation[J]. Dev Cell, 2011, 21 (6): 1062- 1076
doi: 10.1016/j.devcel.2011.09.014
|
23 |
JIN J , ARIAS E E , CHEN J et al. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1[J]. Mol Cell, 2006, 23 (5): 709- 721
doi: 10.1016/j.molcel.2006.08.010
|
24 |
HIGA L A , MIHAYLOV I S , BANKS D P et al. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint[J]. Nat Cell Biol, 2003, 5
doi: 10.1038/ncb1061
|
25 |
ZHAO Y , XIONG X , SUN Y . DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy[J]. Mol Cell, 2011, 44:304- 316
doi: 10.1016/j.molcel.2011.08.029
|
26 |
KAMURA T , MAENAKA K , KOTOSHIBA S et al. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases[J]. Genes Dev, 2004, 18 (24): 3055- 3065
doi: 10.1101/gad.1252404
|
27 |
IVAN M , KONDO K , YANG H et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation:implications for O2 sensing[J]. Science, 2001, 292 (5516): 464- 468
doi: 10.1126/science.1059817
|
28 |
XIE L , XIAO K , WHALEN E J et al. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL[J]. Sci Signal, 2009, 2 (78): ra33
doi: 10.1126/scisignal.2000444
|
29 |
OKUDA H , SAITOH K , HIRAI S et al. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C[J]. J Biol Chem, 2001, 276 (47): 43611- 43617
doi: 10.1074/jbc.M107880200
|
30 |
NA X , DUAN H O , MESSING E M et al. Identification of the RNA polymerase Ⅱ subunit hsRPB7 as a novel target of the von Hippel-Lindau protein[J]. EMBO J, 2003, 22 (16): 4249- 4259
doi: 10.1093/emboj/cdg410
|
31 |
PUGH C W , RATCLIFFE P J . The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1(HIF-1) degradation, and cancer pathogenesis[J]. Semin Cancer Biol, 2003, 13 (1): 83- 89
doi: 10.1016/s1044-579x(02)00103-7
|
32 |
CULLINAN S B , GORDAN J D , JIN J et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase:oxidative stress sensing by a Cul3-Keap1 ligase[J]. Mol Cell Biol, 2004, 24 (19): 8477- 8486
doi: 10.1128/MCB.24.19.8477-8486.2004
|
33 |
HERNANDEZ-MU?OZ I , LUND A H , VAN DER STOOP P et al. Stable X chromosome inactivation involves the PRC1 polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase[J]. Proc Natl Acad Sci U S A, 2005, 102 (21): 7635- 7640
doi: 10.1073/pnas.0408918102
|
34 |
KWON J E , LA M , OH K H et al. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase[J]. J Biol Chem, 2006, 281 (18): 12664- 12672
doi: 10.1074/jbc.M600204200
|
35 |
KOBAYASHI A , KANG M I , OKAWA H et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2[J]. Mol Cell Biol, 2004, 24 (16): 7130- 7139
doi: 10.1128/MCB.24.16.7130-7139.2004
|
36 |
SUGASAWA K , OKUDA Y , SAIJO M et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex[J]. Cell, 2005, 121 (3): 387- 400
doi: 10.1016/j.cell.2005.02.035
|
37 |
ABBAS T , SHIBATA E , PARK J et al. CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation[J]. Mol Cell, 2010, 40 (1): 9- 21
doi: 10.1016/j.molcel.2010.09.014
|
38 |
NAKAGAWA T , XIONG Y . X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression[J]. Mol Cell, 2011, 43 (3): 381- 391
doi: 10.1016/j.molcel.2011.05.033
|
39 |
ZHOU W , XU J , LI H et al. Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage[J]. Clin Cancer Res, 2017, 23 (4): 1104- 1116
doi: 10.1158/1078-0432.CCR-16-1585
|
40 |
YU X , YU Y , LIU B et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex[J]. Science, 2003, 302:1056- 1060
doi: 10.1126/science.1089591
|
41 |
QUERIDO E , BLANCHETTE P , YAN Q et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex[J]. Genes Dev, 2001, 15:3104- 3117
doi: 10.1101/gad.926401
|
42 |
PAN Z Q . Cullin-RING E3 ubiquitin ligase 7 in growth control and cancer[J]. Adv Exp Med Biol, 2020, 1217:285- 296
doi: 10.1007/978-981-15-1025-0_17
|
43 |
XU X , SARIKAS A , DIAS-SANTAGATA D C et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation[J]. Mol Cell, 2008, 30:403- 414
doi: 10.1016/j.molcel.2008.03.009
|
44 |
NIKOLAEV A Y , LI M , PUSKAS N et al. Parc:a cytoplasmic anchor for p53[J]. Cell, 2003, 112 (1): 29- 40
doi: 10.1016/s0092-8674(02)01255-2
|
45 |
HUANG X , DIXIT V M . Drugging the undruggables:exploring the ubiquitin system for drug development[J]. Cell Res, 2016, 26 (4): 484- 498
doi: 10.1038/cr.2016.31
|
46 |
NAKAYAMA K I , NAKAYAMA K . Ubiquitin ligases:cell-cycle control and cancer[J]. Nat Rev Cancer, 2006, 6:369- 381
doi: 10.1038/nrc1881
|
47 |
FRESCAS D , PAGANO M . Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP:tipping the scales of cancer[J]. Nat Rev Cancer, 2008, 8 (6): 438- 449
doi: 10.1038/nrc2396
|
48 |
WEI D , SUN Y . Small RING finger proteins RBX1 and RBX2 of SCF E3 ubiquitin ligases:the role in cancer and as cancer targets[J]. Genes Cancer, 2010, 1 (7): 700- 707
doi: 10.1177/1947601910382776
|
49 |
YU Q , JIANG Y , SUN Y . Anticancer drug discovery by targeting cullin neddylation[J]. Acta Pharmaceutica Sinica B, 2019,
doi: 10.1016/j.apsb.2019.09.005
|
50 |
MILHOLLEN M A , THOMAS M P , NARAYANAN U et al. Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924[J]. Cancer Cell, 2012, 21:388- 401
doi: 10.1016/j.ccr.2012.02.009
|
51 |
TOTH J I , YANG L , DAHL R et al. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924[J]. Cell Rep, 2012, 1 (4): 309- 316
doi: 10.1016/j.celrep.2012.02.006
|
52 |
ZHOU Q , SUN Y . MLN4924:additional activities beyond neddylation inhibition[J]. Mol Cell Oncol, 2019, 6 (5): e1618174
doi: 10.1080/23723556.2019.1618174
|
53 |
WELCKER M , CLURMAN B E . FBW7 ubiquitin ligase:a tumour suppressor at the crossroads of cell division, growth and differentiation[J]. Nat Rev Cancer, 2008, 8 (2): 83- 93
doi: 10.1038/nrc2290
|
54 |
CHEN Q , XIE W , KUHN D J et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy[J]. Blood, 2008, 111 (9): 4690- 4699
doi: 10.1182/blood-2007-09-112904
|
55 |
WU L , GRIGORYAN A V , LI Y et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation[J]. Chem Biol, 2012, 19 (12): 1515- 1524
doi: 10.1016/j.chembiol.2012.09.015
|
56 |
CHAN C H , MORROW J K , LI C F et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression[J]. Cell, 2013, 154 (3): 556- 568
doi: 10.1016/j.cell.2013.06.048
|
57 |
UNGERMANNOVA D , LEE J , ZHANG G et al. High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCFSkp2-Cks1[J]. J Biomol Screen, 2013, 18:910- 920
doi: 10.1177/1087057113485789
|
58 |
BLEES J S , BOKESCH H R , RUBSAMEN D et al. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase beta-TrCP1[J]. PLoS One, 2012, 7:e46567
doi: 10.1371/journal.pone.0046567
|
59 |
ORLICKY S , TANG X , NEDUVA V et al. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase[J]. Nat Biotechnol, 2010, 28 (7): 733- 737
doi: 10.1038/nbt.1646
|
60 |
WU K , CHONG R A , YU Q et al. Suramin inhibits cullin-RING E3 ubiquitin ligases[J]. Proc Natl Acad Sci U S A, 2016, 113 (14): E2011- 2018
doi: 10.1073/pnas.1601089113
|
61 |
AGHAJAN M , JONAI N , FLICK K et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase[J]. Nat Biotechnol, 2010, 28 (7): 738- 742
doi: 10.1038/nbt.1645
|
62 |
SCOTT D C , HAMMILL J T , MIN J et al. Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase[J]. Nat Chem Biol, 2017, 13 (8): 850- 857
doi: 10.1038/nchembio.2386
|
63 |
HAMMILL J T , BHASIN D , SCOTT D C et al. Discovery of an orally bioavailable inhibitor of defective in cullin neddylation 1(DCN1)-mediated cullin neddylation[J]. J Med Chem, 2018, 61 (7): 2694- 2706
doi: 10.1021/acs.jmedchem.7b01282
|
64 |
HAMMILL J T , SCOTT D C , MIN J et al. Piperidinyl ureas chemically control defective in cullin neddylation 1(DCN1)-mediated cullin neddylation[J]. J Med Chem, 2018, 61 (7): 2680- 2693
doi: 10.1021/acs.jmedchem.7b01277
|
65 |
KIM H S , HAMMILL J T , SCOTT D C et al. Discovery of novel pyrazolo-pyridone DCN1 inhibitors controlling cullin neddylation[J]. J Med Chem, 2019, 62 (18): 8429- 8442
doi: 10.1021/acs.jmedchem.9b00410
|
66 |
ZHOU H , LU J , LIU L et al. A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation[J]. Nat Commun, 2017, 8 (1): 1150
doi: 10.1038/s41467-017-01243-7
|
67 |
ZHOU H , ZHOU W , ZHOU B et al. High-affinity peptidomimetic inhibitors of the DCN1-UBC12 protein-protein interaction[J]. J Med Chem, 2018, 61 (5): 1934- 1950
doi: 10.1021/acs.jmedchem.7b01455
|
68 |
WANG S , ZHAO L , SHI X J et al. Development of highly potent, selective, and cellular active triazolo[1, 5- a]pyrimidine-based inhibitors targeting the DCN1-UBC12 protein-protein interaction[J]. J Med Chem, 2019, 62 (5): 2772- 2797
doi: 10.1021/acs.jmedchem.9b00113
|
69 |
ZHOU W , MA L , DING L et al. Potent 5-cyano-6-phenyl-pyrimidin-based derivatives targeting DCN1-UBE2M interaction[J]. J Med Chem, 2019, 62 (11): 5382- 5403
doi: 10.1021/acs.jmedchem.9b00003
|
70 |
KEPINSKI S , LEYSER O . The arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435 (7041): 446- 451
doi: 10.1038/nature03542
|
71 |
TAN X , CALDERON-VILLALOBOS L I , SHARON M et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446 (7136): 640- 645
doi: 10.1038/nature05731
|
72 |
ITO T , ANDO H , SUZUKI T et al. Identification of a primary target of thalidomide teratogenicity[J]. Science, 2010, 327 (5971): 1345- 1350
doi: 10.1126/science.1177319
|
73 |
KR?NKE J , UDESHI N D , NARLA A et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells[J]. Science, 2014, 343 (6168): 301- 305
doi: 10.1126/science.1244851
|
74 |
PETZOLD G , FISCHER E S , THOMA N H . Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase[J]. Nature, 2016, 532 (7597): 127- 130
doi: 10.1038/nature16979
|
75 |
FISCHER E S , B?HM K , LYDEARD J R et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide[J]. Nature, 2014, 512 (7512): 49- 53
doi: 10.1038/nature13527
|
76 |
SIMONETTA K R , TAYGERLY J , BOYLE K et al. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction[J]. Nat Commun, 2019, 10 (1): 1402
doi: 10.1038/s41467-019-09358-9
|
77 |
HUANG H L , WENG H Y , WANG L Q et al. Triggering Fbw7-mediated proteasomal degradationof c-Myc by oridonin induces cell growth inhibition and apoptosis[J]. Mol Cancer Ther, 2012, 11 (5): 1155- 1165
doi: 10.1158/1535-7163.MCT-12-0066
|
78 |
NAKAYAMA K , NAGAHAMA H , MINAMISHIMA Y A et al. Skp2-mediated degradation of p27 regulates progression into mitosis[J]. Dev Cell, 2004, 6 (5): 661- 672
doi: 10.1016/s1534-5807(04)00131-5
|
79 |
NAKAYAMA K , NAGAHAMA H , MINAMISHIMA Y A et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication[J]. EMBO J, 2000, 19:2069- 2081
doi: 10.1093/emboj/19.9.2069
|
80 |
KOSSATZ U , DIETRICH N , ZENDER L et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression[J]. Genes Dev, 2004, 18 (21): 2602- 2607
doi: 10.1101/gad.321004
|
81 |
LI X , ELMIRA E , ROHONDIA S et al. A patent review of the ubiquitin ligase system:2015-2018[J]. Expert Opin Ther Pat, 2018, 28 (12): 919- 937
doi: 10.1080/13543776.2018.1549229
|
82 |
KULLMANN M K , GRUBBAUER C , GOETSCH K et al. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells[J]. Cell Cycle, 2013, 12 (16): 2625- 2635
doi: 10.4161/cc.25622
|
83 |
ZHAO H , BAUZON F , FU H et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors[J]. Cancer Cell, 2013, 24 (5): 645- 659
doi: 10.1016/j.ccr.2013.09.021
|
84 |
HULIT J , LEE R J , LI Z et al. p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/beta-catenin signaling[J]. Cancer Res, 2006, 66 (17): 8529- 8541
doi: 10.1158/0008-5472.CAN-06-0149
|
85 |
RICO-BAUTISTA E , YANG C C , LU L et al. Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells[J]. BMC Biol, 2010, 8:153
doi: 10.1186/1741-7007-8-153
|
86 |
RICO-BAUTISTA E , ZHU W , KITADA S et al. Small molecule-induced mitochondrial disruption directs prostate cancer inhibition via UPR signaling[J]. Oncotarget, 2013, 4 (8): 1212- 1229
doi: 10.18632/oncotarget.1130
|
87 |
OH M , LEE J H , MOON H et al. A chemical inhibitor of the Skp2/p300 interaction that promotes p53-mediated apoptosis[J]. Angew Chem Int Ed Engl, 2016, 55 (2): 602- 606
doi: 10.1002/anie.201508716
|
88 |
ZHENG N , ZHOU Q , WANG Z et al. Recent advances in SCF ubiquitin ligase complex:Clinical implications[J]. Biochim Biophys Acta, 2016, 1866 (1): 12- 22
doi: 10.1016/j.bbcan.2016.05.001
|
89 |
WEI N A , LIU S S , LEUNG T H et al. Loss of programmed cell death 4(Pdcd4) associates with the progression of ovarian cancer[J]. Mol Cancer, 2009, 8:70
doi: 10.1186/1476-4598-8-70
|
90 |
AKHOONDI S , SUN D , VON DER LEHR N et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer[J]. Cancer Res, 2007, 67 (19): 9006- 9012
doi: 10.1158/0008-5472.CAN-07-1320
|
91 |
WELCKER M , ORIAN A , JIN J et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation[J]. Proc Natl Acad Sci U S A, 2004, 101 (24): 9085- 9090
doi: 10.1073/pnas.0402770101
|
92 |
YADA M , HATAKEYAMA S , KAMURA T et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7[J]. EMBO J, 2004, 23 (10): 2116- 2125
doi: 10.1038/sj.emboj.7600217
|
93 |
BUSINO L , MILLMAN S E , SCOTTO L et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma[J]. Nat Cell Biol, 2012, 14:375- 385
doi: 10.1038/ncb2463
|
94 |
MA J , CHENG L , LIU H et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells[J]. Curr Drug Targets, 2013, 14 (10): 1150- 1156
doi: 10.2174/13894501113149990187
|
95 |
MCGEARY R P , BENNETT A J , TRAN Q B et al. Suramin:clinical uses and structure-activity relationships[J]. Mini Rev Med Chem, 2008, 8 (13): 1384- 1394
doi: 10.2174/138955708786369573
|
96 |
GORELIK M , ORLICKY S , SARTORI M A et al. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface[J]. Proc Natl Acad Sci U S A, 2016, 113 (13): 3527- 3532
doi: 10.1073/pnas.1519389113
|
97 |
KURZ T , OZLU N , RUDOLF F et al. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae[J]. Nature, 2005, 435:1257- 1261
doi: 10.1038/nature03662
|
98 |
SCOTT D C , SVIDERSKIY V O , MONDA J K et al. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8[J]. Cell, 2014, 157 (7): 1671- 1684
doi: 10.1016/j.cell.2014.04.037
|
99 |
SARKARIA I S , PHAM D , GHOSSEIN R A et al. SCCRO expression correlates with invasive progression in bronchioloalveolar carcinoma[J]. Ann Thorac Surg, 2004, 78 (5): 1734- 1741
doi: 10.1016/j.athoracsur.2004.05.056
|
100 |
SARKARIA I , O-CHAROENRAT P , TALBOT S G et al. Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas[J]. Cancer Res, 2006, 66 (19): 9437- 9444
doi: 10.1158/0008-5472.CAN-06-2074
|
101 |
CALDERON-VILLALOBOS L I , TAN X , ZHENG N et al. Auxin perception——structural insights[J]. Cold Spring Harb Perspect Biol, 2010, 2 (7): a005546
doi: 10.1101/cshperspect.a005546
|
102 |
FRANKS M E , MACPHERSON G R , FIGG W D . Thalidomide[J]. Lancet, 2004, 363 (9423): 1802- 1811
doi: 10.1016/S0140-6736(04)16308-3
|
103 |
POLAKIS P . Wnt signaling and cancer[J]. Genes Dev, 2000, 14 (15): 1837- 1851
doi: 10.1101/gad.14.15.1837
|
104 |
ZHOU G B , CHEN S J , WANG Z Y et al. Back to the future of oridonin:again, compound from medicinal herb shows potent antileukemia efficacies in vitro and in vivo[J]. Cell Res, 2007, 17 (4): 274- 276
doi: 10.1038/cr.2007.21
|
105 |
GU S , CUI D , CHEN X et al. PROTACs:an emerging targeting technique for protein degradation in drug discovery[J]. Bioessays, 2018, 40 (4): e1700247
doi: 10.1002/bies.201700247
|
106 |
SAKAMOTO K M , KIM K B , KUMAGAI A et al. Protacs:chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation[J]. Proc Natl Acad Sci U S A, 2001, 98 (15): 8554- 8559
doi: 10.1073/pnas.141230798
|
107 |
SCHNEEKLOTH JS J R , FONSECA F N , KOLDOBSKIY M et al. Chemical genetic control of protein levels:selective in vivo targeted degradation[J]. J Am Chem Soc, 2004, 126 (12): 3748- 3754
doi: 10.1021/ja039025z
|
108 |
HINES J , GOUGH J D , CORSON T W et al. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs[J]. Proc Natl Acad Sci U S A, 2013, 110 (22): 8942- 8947
doi: 10.1073/pnas.1217206110
|
109 |
SCHNEEKLOTH A R , PUCHEAULT M , TAE H S et al. Targeted intracellular protein degradation induced by a small molecule:En route to chemical proteomics[J]. Bioorg Med Chem Lett, 2008, 18 (22): 5904- 5908
doi: 10.1016/j.bmcl.2008.07.114
|
110 |
NEKLESA T , SNYDER L B , WILLARD R R et al. ARV-110:an oral androgen receptor PROTAC degrader for prostate cancer[J]. J Clin Oncol, 2019, 37 (7_suppl): 259
doi: 10.1200/JCO.2019.37.7_suppl.259
|
111 |
LU J , QIAN Y , ALTIERI M et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4[J]. Chem Biol, 2015, 22 (6): 755- 763
doi: 10.1016/j.chembiol.2015.05.009
|
112 |
WINTER G E , BUCKLEY D L , PAULK J et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation[J]. Science, 2015, 348 (6241): 1376- 1381
doi: 10.1126/science.aab1433
|
113 |
BONDESON D P , MARES A , SMITH I E et al. Catalytic in vivo protein knockdown by small-molecule PROTACs[J]. Nat Chem Biol, 2015, 11 (8): 611- 617
doi: 10.1038/nchembio.1858
|
114 |
BUCKLEY D L , RAINA K , DARRICARRERE N et al. HaloPROTACS:use of small molecule PROTACs to induce degradation of halotag fusion proteins[J]. ACS Chem Biol, 2015, 10 (8): 1831- 1837
doi: 10.1021/acschembio.5b00442
|
115 |
ZENGERLE M , CHAN K H , CIULLI A . Selective small molecule induced degradation of the BET bromodomain protein BRD4[J]. ACS Chem Biol, 2015, 10 (8): 1770- 1777
doi: 10.1021/acschembio.5b00216
|
116 |
LEBRAUD H , WRIGHT D J , JOHNSON C N et al. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras[J]. ACS Cent Sci, 2016, 2 (12): 927- 934
doi: 10.1021/acscentsci.6b00280
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|