原著 |
|
|
|
|
白介素35在炎性肠疾病中的抗炎作用机制 |
卢战军1,2,3( ),胡洋洋2,3,李思思2,3,臧丽娟4,蒋巍亮2,3,吴坚炯2,巫协宁2,曾悦2,3,王兴鹏1,2,3,*( ) |
1. 南京医科大学附属上海一院临床医学院消化科, 上海 200080 2. 上海交通大学附属第一人民医院消化科, 上海 200080 3. 上海市胰腺疾病重点实验室, 上海 200080 4. 上海交通大学附属第一人民医院病理中心, 上海 200080 |
|
Anti-inflammatory effect of interleukin-35 in mice with colitis and its mechanism |
LU Zhanjun1,2,3( ),HU Yangyang2,3,LI Sisi2,3,ZANG Lijuan4,JIANG Weiliang2,3,WU Jianjiong2,WU Xiening2,ZENG Yue2,3,WANG Xingpeng1,2,3,*( ) |
1. Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China 2. Department of Gastroenterology, Shanghai General Hospital, Shanghai 200080, China 3. Shanghai Key Laboratory of Pancreatic Disease, Shanghai 200080, China 4. Pathology Center, Shanghai General Hospital, Shanghai 200080, China |
引用本文:
卢战军,胡洋洋,李思思,臧丽娟,蒋巍亮,吴坚炯,巫协宁,曾悦,王兴鹏. 白介素35在炎性肠疾病中的抗炎作用机制[J]. 浙江大学学报(医学版), 2018, 47(5): 499-506.
LU Zhanjun,HU Yangyang,LI Sisi,ZANG Lijuan,JIANG Weiliang,WU Jianjiong,WU Xiening,ZENG Yue,WANG Xingpeng. Anti-inflammatory effect of interleukin-35 in mice with colitis and its mechanism. J Zhejiang Univ (Med Sci), 2018, 47(5): 499-506.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.10.09
或
http://www.zjujournals.com/med/CN/Y2018/V47/I5/499
|
1 |
KIM D H , CHEON J H . Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies[J]. Immune Netw, 2017, 17 (1): 25- 40
doi: 10.4110/in.2017.17.1.25
|
2 |
POWELL N , LO J W , BIANCHERI P et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation[J]. Gastroenterology, 2015, 149 (2): 456- 467
doi: 10.1053/j.gastro.2015.04.017
|
3 |
CHOI J , LEUNG P S , BOWLUS C et al. IL-35 and autoimmunity:a comprehensive perspective[J]. Clin Rev Allergy Immunol, 2015, 49 (3): 327- 332
doi: 10.1007/s12016-015-8468-9
|
4 |
LIU J Q , LIU Z , ZHANG X et al. Increased Th17 and regulatory T cell responses in EBV-induced gene 3-deficient mice lead to marginally enhanced development of autoimmune encephalomyelitis[J]. J Immunol, 2012, 188 (7): 3099- 3106
doi: 10.4049/jimmunol.1100106
|
5 |
FONSECA-CAMARILLO G , FURUZAWA-CARBALLEDA J , YAMAMOTO-FURUSHO J K . Interleukin 35(IL-35) and IL-37:intestinal and peripheral expression by T and B regulatory cells in patients with inflammatory bowel disease[J]. Cytokine, 2015, 75 (2): 389- 402
doi: 10.1016/j.cyto.2015.04.009
|
6 |
OKAYASU I , HATAKEYAMA S , YAMADA M et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice[J]. Gastroenterology, 1990, 98 (3): 694- 702
doi: 10.1016/0016-5085(90)90290-H
|
7 |
SCHEIFFELE F , FUSS I J . Induction of TNBS colitisin mice[J]. Curr Protoc Immunol, 2002,
|
8 |
KMIE? Z , CYMAN M , ?LEBIODA T J . Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease[J]. Adv Med Sci, 2017, 62 (1): 1- 16
|
9 |
QUETGLAS E G , MUJAGIC Z , WIGGE S et al. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease[J]. World J Gastroenterol, 2015, 21 (44): 12519- 12543
doi: 10.3748/wjg.v21.i44.12519
|
10 |
LI Y , WANG Y , LIU Y et al. The possible role of the novel cytokines IL-35 and IL-37 in inflammatory bowel disease[J]. Mediators Inflamm, 2014, 2014:136329
|
11 |
SHEN P , ROCH T , LAMPROPOULOU V et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases[J]. Nature, 2014, 507 (7492): 366- 370
doi: 10.1038/nature12979
|
12 |
PARK J S , JOE I , RHEE P D et al. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis[J]. J Microbiol, 2017, 55 (4): 304- 310
doi: 10.1007/s12275-017-6447-y
|
13 |
COLLISON L W , VIGNALI D A . Interleukin-35:odd one out or part of the family?[J]. Immunol Rev, 2008, 226:248- 262
doi: 10.1111/imr.2008.226.issue-1
|
14 |
ZHANG J , LIN Y , LI C et al. IL-35 decelerates the inflammatory process by regulating inflammatory cytokine secretion and M1/M2 macrophage ratio in psoriasis[J]. J Immunol, 2016, 197 (6): 2131- 2144
doi: 10.4049/jimmunol.1600446
|
15 |
RUGTVEIT J , BRANDTZAEG P , HALSTENSENT S et al. Increased macrophage subset in inflammatory bowel disease:apparent recruitment from peripheral blood monocytes[J]. Gut, 1994, 35 (5): 669- 674
doi: 10.1136/gut.35.5.669
|
16 |
ISIDRO R A , APPLEYARD C B . Colonic macrophage polarization in homeostasis, inflammation, and cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311 (1): G59- G73
doi: 10.1152/ajpgi.00123.2016
|
17 |
LU Z J , WU J J , JIANG W L et al. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression[J]. World J Gastroenterol, 2017, 23 (6): 976- 985
doi: 10.3748/wjg.v23.i6.976
|
18 |
KERR W G , PARK M Y , MAUBERT M et al. SHIP deficiency causes Crohn's disease-like ileitis[J]. Gut, 2011, 60 (2): 177- 188
doi: 10.1136/gut.2009.202283
|
19 |
SLY L M , HO V , ANTIGNANO F et al. The role of SHIP in macrophages[J]. Front Biosci, 2007, 12:2836- 2848
doi: 10.2741/2276
|
20 |
WEISSER S B , MCLARREN K W , VOGLMAIER N et al. Alternative activation of macrophages by IL-4 requires SHIP degradation[J]. Eur J Immunol, 2011, 41 (6): 1742- 1753
doi: 10.1002/eji.v41.6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|