Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (5): 499-506    DOI: 10.3785/j.issn.1008-9292.2018.10.09
原著     
白介素35在炎性肠疾病中的抗炎作用机制
卢战军1,2,3(),胡洋洋2,3,李思思2,3,臧丽娟4,蒋巍亮2,3,吴坚炯2,巫协宁2,曾悦2,3,王兴鹏1,2,3,*()
1. 南京医科大学附属上海一院临床医学院消化科, 上海 200080
2. 上海交通大学附属第一人民医院消化科, 上海 200080
3. 上海市胰腺疾病重点实验室, 上海 200080
4. 上海交通大学附属第一人民医院病理中心, 上海 200080
Anti-inflammatory effect of interleukin-35 in mice with colitis and its mechanism
LU Zhanjun1,2,3(),HU Yangyang2,3,LI Sisi2,3,ZANG Lijuan4,JIANG Weiliang2,3,WU Jianjiong2,WU Xiening2,ZENG Yue2,3,WANG Xingpeng1,2,3,*()
1. Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
2. Department of Gastroenterology, Shanghai General Hospital, Shanghai 200080, China
3. Shanghai Key Laboratory of Pancreatic Disease, Shanghai 200080, China
4. Pathology Center, Shanghai General Hospital, Shanghai 200080, China
 全文: PDF(1635 KB)   HTML( 12 )
摘要:

目的: 研究IL-35在炎性肠疾病中的抗炎作用及相关机制。方法: BALB/c雌性小鼠共30只,随机分为对照组、模型组(口服4%葡聚糖硫酸钠7 d)、IL-35组(口服4%葡聚糖硫酸钠7 d,第2~5天腹腔注射IL-35 2 μg/d),每组10只。每天对小鼠进行疾病活动指数(DAI)评分;7 d后处死小鼠,留取血清和肠道组织,观察结肠大体形态;HE染色观察各组结肠组织病理形态变化;流式细胞术检测各组结肠组织中巨噬细胞极化情况;实时定量RT-PCR检测各组结肠组织中细胞因子IL-6、TNF-α、γ干扰素(IFN-γ)、IL-10和Src同源系列2结构域的肌醇5-磷酸酶1(SHIP1)的mRNA表达量;免疫组织化学法检测各组结肠组织中SHIP1的表达及分布情况;蛋白质印迹法检测各组结肠组织中SHIP1蛋白的表达。结果: 模型组在实验过程中DAI评分较对照组增加,而IL-35组自第4天起DAI评分较模型组减少(均P < 0.01);与对照组比较,模型组结肠明显缩短(P < 0.05),而IL-35组的结肠长度长于模型组,但差异无统计学意义(P > 0.05);与模型组比较,IL-35组炎症细胞浸润减少、黏膜组织炎症评分和腺窝破坏组织评分较模型组减少(均P < 0.05);IL-35组结肠组织中促炎因子IL-6、TNF-α和IFN-γ的mRNA相对表达量较模型组减少,而抑炎因子IL-10的mRNA相对表达量较模型组增加(均P < 0.05);与对照组比较,模型组M1型巨噬细胞比例增加(P < 0.05),而IL-35组M1型巨噬细胞的比例较模型组减少(P < 0.05);IL-35组小鼠结肠组织中SHIP1 mRNA和蛋白相对表达量均较模型组增加(均P < 0.05)。结论: 在炎性肠疾病中,IL-35可以通过调控SHIP1表达抑制M1型巨噬细胞极化,以及调节炎症因子的表达发挥抗炎作用。

关键词: 炎性肠疾病/病理生理学白细胞介素类/代谢免疫组织化学印迹法, 蛋白质随机对照试验疾病模型, 动物    
Abstract:

Objective: To investigate the anti-inflammatory effect and mechanisms of interleukin-35 (IL-35) in inflammatory bowel disease. Methods: BALB/c mice were divided into three groups with 10 mice in each group:control group, model group (oral administration of 4% glucan sodium sulfate for 7 d) and IL-35-treated group (oral administration of 4% glucan sodium sulfate for 7 d, intraperitoneal injection of 2 μg IL-35 at d2-5). Disease activity index (DAI) was scored every day. After 7 d, the mice were sacrificed, and the serum and intestinal tissue samples were collected. The gross morphology of the colon was observed; HE staining was used to observe the pathological changes of colon tissue; flow cytometry was employed to detect the change of macrophage polarization ratio in colon tissue; the mRNA expression levels of cytokines IL-6, TNF-α, IFN-γ, IL-10 and SHIP1 in colon tissue were determined by real-time quantitative RT-PCR; the expression and distribution of SHIP1 in colon tissue was measured by immunohistochemistry; Western blotting was adopted to detect the expression level of SHIP1 protein in colonic intestinal tissues of each group. Results: The DAI scores of the mice in the model group were higher than those in the control group, while the DAI scores in the IL-35-treated group were lower than those in the model group (all P < 0.01). Compared with the control group, the colon length was significantly shortened in the model group (P < 0.05), while the colon length of the IL-35-treated group had an increasing trend compared with the model group, but the difference was not statistically significant (P > 0.05). Compared with the model group, microscopic inflammatory infiltration score was decreased and microscopic crypt destruction and score was significantly lower in IL-35-treated group (all P < 0.05). The relative expression of proinflammatory cytokines IL-6, TNF-α and IFN-γ in the colon tissue of IL-35-treated group was decreased compared with the model group, while the relative expression of IL-10 mRNA was higher than that of the model group (all P < 0.05). Compared with the control group, the proportion of M1 macrophages in the model group increased (P < 0.05), while the proportion of M1 macrophages in the IL-35-treated group was lower than that in the model group (P < 0.05). The relative expression of SHIP1 mRNA and protein in the colon tissue of IL-35-treated group was higher than that in the model group (all P < 0.05). Conclusion: IL-35 can inhibit the polarization of M1 macrophages and regulate inflammatory cytokines to promote anti-inflammatory effect on mice with colitis.

Key words: Inflammatory bowel diseases/physiopathology    Interleukins/metabolism    Immunohistochemistry    Blotting, western    Randomized controlled trial    Disease models, animal
收稿日期: 2018-07-20 出版日期: 2019-01-23
:  R574  
基金资助: 国家自然科学基金(81802318)
通讯作者: 王兴鹏     E-mail: lzjdoctor@126.com;richardwangxp@163.com
作者简介: 卢战军(1979-), 男, 硕士, 主治医师, 主要从事炎性肠疾病的临床和基础研究; E-mail:lzjdoctor@126.com; https://orcid.org/0000-0001-6881-5810
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢战军
胡洋洋
李思思
臧丽娟
蒋巍亮
吴坚炯
巫协宁
曾悦
王兴鹏

引用本文:

卢战军,胡洋洋,李思思,臧丽娟,蒋巍亮,吴坚炯,巫协宁,曾悦,王兴鹏. 白介素35在炎性肠疾病中的抗炎作用机制[J]. 浙江大学学报(医学版), 2018, 47(5): 499-506.

LU Zhanjun,HU Yangyang,LI Sisi,ZANG Lijuan,JIANG Weiliang,WU Jianjiong,WU Xiening,ZENG Yue,WANG Xingpeng. Anti-inflammatory effect of interleukin-35 in mice with colitis and its mechanism. J Zhejiang Univ (Med Sci), 2018, 47(5): 499-506.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.10.09        http://www.zjujournals.com/med/CN/Y2018/V47/I5/499

引物名称 引物序列(5'→3')
IL-6 正向:ACAAAGCCAGAGTCCTTCAGAG
反向:GCCACTCCTTCTGTGACTCC
TNF-α 正向:CCACCACGCTCTTCTGTCTA
反向:GGTTTGCTACGACGTGGGG
IFN-γ 正向:AGACAATCAGGCCATCAGCA
反向:TGGACCTGTGGGTTGTTGAC
IL-10 正向:CAGTACAGCCGGGAAGACAAT
反向:TTGGCAACCCAAGTAACCCT
SHIP1 正向:GCGTGCTGTATCGGAATTGG
反向:TGGTGAAGAACCTCATGGAGAC
β-actin 正向:TGGACTTCGAGCAAGAGATG
反向:GAAGGAAGGCTGGAAGAGTA
GAPDH 正向:ACCACAGTCCATGCCATCACT
反向:TCCACCACCCTGTTGCTGTA
表 1  实时定量RT-PCR引物序列
图 1  各组疾病活动指数评分比较
图 2  各组结肠组织大体形态比较
图 3  三组结肠组织病理学检查结果(HE染色)
($\bar x \pm s$)
组别 n 黏膜组织炎症评分 腺窝破坏组织评分
与对照组比较,*P<0.05;与模型组比较,#P<0.05.IL:白介素.
对照组 10 1.02±0.43 0
模型组 10 16.12±1.05* 8.96±1.21*
IL-35组 10 8.12±0.78*# 5.93±0.56#
表 2  三组结肠黏膜组织炎症评分和腺窝破坏组织评分比较
图 4  三组结肠组织中促炎因子和抑炎因子mRNA相对表达量比较
图 5  三组结肠组织中巨噬细胞极化流式细胞检测图
($\bar x \pm s$,%)
组别 n M1型巨噬细胞 M2型巨噬细胞
与对照组比较,*P<0.05;与模型组比较,#P<0.05.IL:白介素.
对照组 10 7.1±1.2 8.2±1.1
模型组 10 20.0±1.8* 13.1±2.8*
IL-35组 10 11.5±1.3# 9.9±4.2
表 3  三组结肠组织中M1型和M2型巨噬细胞比例比较
图 6  三组结肠组织中SHIP1免疫组织化学染色结果
图 7  三组结肠组织中SHIP1蛋白表达电泳图
($\bar x \pm s$)
组别 n SHIP1 mRNA SHIP1蛋白
与对照组比较,*P<0.05;与模型组比较,#P<0.05.SHIP1:含有Scr同源系列2结构域的肌醇5-磷酸酶1;IL:白介素.
对照组 10 1.02±0.32 0.37±0.26
模型组 10 4.71±0.32 0.42±0.07
IL-35组 10 18.1±4.18*# 1.03±0.24*#
表 4  三组结肠组织中SHIP1 mRNA和蛋白相对表达量比较
1 KIM D H , CHEON J H . Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies[J]. Immune Netw, 2017, 17 (1): 25- 40
doi: 10.4110/in.2017.17.1.25
2 POWELL N , LO J W , BIANCHERI P et al. Interleukin 6 increases production of cytokines by colonic innate lymphoid cells in mice and patients with chronic intestinal inflammation[J]. Gastroenterology, 2015, 149 (2): 456- 467
doi: 10.1053/j.gastro.2015.04.017
3 CHOI J , LEUNG P S , BOWLUS C et al. IL-35 and autoimmunity:a comprehensive perspective[J]. Clin Rev Allergy Immunol, 2015, 49 (3): 327- 332
doi: 10.1007/s12016-015-8468-9
4 LIU J Q , LIU Z , ZHANG X et al. Increased Th17 and regulatory T cell responses in EBV-induced gene 3-deficient mice lead to marginally enhanced development of autoimmune encephalomyelitis[J]. J Immunol, 2012, 188 (7): 3099- 3106
doi: 10.4049/jimmunol.1100106
5 FONSECA-CAMARILLO G , FURUZAWA-CARBALLEDA J , YAMAMOTO-FURUSHO J K . Interleukin 35(IL-35) and IL-37:intestinal and peripheral expression by T and B regulatory cells in patients with inflammatory bowel disease[J]. Cytokine, 2015, 75 (2): 389- 402
doi: 10.1016/j.cyto.2015.04.009
6 OKAYASU I , HATAKEYAMA S , YAMADA M et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice[J]. Gastroenterology, 1990, 98 (3): 694- 702
doi: 10.1016/0016-5085(90)90290-H
7 SCHEIFFELE F , FUSS I J . Induction of TNBS colitisin mice[J]. Curr Protoc Immunol, 2002,
8 KMIE? Z , CYMAN M , ?LEBIODA T J . Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease[J]. Adv Med Sci, 2017, 62 (1): 1- 16
9 QUETGLAS E G , MUJAGIC Z , WIGGE S et al. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease[J]. World J Gastroenterol, 2015, 21 (44): 12519- 12543
doi: 10.3748/wjg.v21.i44.12519
10 LI Y , WANG Y , LIU Y et al. The possible role of the novel cytokines IL-35 and IL-37 in inflammatory bowel disease[J]. Mediators Inflamm, 2014, 2014:136329
11 SHEN P , ROCH T , LAMPROPOULOU V et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases[J]. Nature, 2014, 507 (7492): 366- 370
doi: 10.1038/nature12979
12 PARK J S , JOE I , RHEE P D et al. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis[J]. J Microbiol, 2017, 55 (4): 304- 310
doi: 10.1007/s12275-017-6447-y
13 COLLISON L W , VIGNALI D A . Interleukin-35:odd one out or part of the family?[J]. Immunol Rev, 2008, 226:248- 262
doi: 10.1111/imr.2008.226.issue-1
14 ZHANG J , LIN Y , LI C et al. IL-35 decelerates the inflammatory process by regulating inflammatory cytokine secretion and M1/M2 macrophage ratio in psoriasis[J]. J Immunol, 2016, 197 (6): 2131- 2144
doi: 10.4049/jimmunol.1600446
15 RUGTVEIT J , BRANDTZAEG P , HALSTENSENT S et al. Increased macrophage subset in inflammatory bowel disease:apparent recruitment from peripheral blood monocytes[J]. Gut, 1994, 35 (5): 669- 674
doi: 10.1136/gut.35.5.669
16 ISIDRO R A , APPLEYARD C B . Colonic macrophage polarization in homeostasis, inflammation, and cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311 (1): G59- G73
doi: 10.1152/ajpgi.00123.2016
17 LU Z J , WU J J , JIANG W L et al. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression[J]. World J Gastroenterol, 2017, 23 (6): 976- 985
doi: 10.3748/wjg.v23.i6.976
18 KERR W G , PARK M Y , MAUBERT M et al. SHIP deficiency causes Crohn's disease-like ileitis[J]. Gut, 2011, 60 (2): 177- 188
doi: 10.1136/gut.2009.202283
19 SLY L M , HO V , ANTIGNANO F et al. The role of SHIP in macrophages[J]. Front Biosci, 2007, 12:2836- 2848
doi: 10.2741/2276
20 WEISSER S B , MCLARREN K W , VOGLMAIER N et al. Alternative activation of macrophages by IL-4 requires SHIP degradation[J]. Eur J Immunol, 2011, 41 (6): 1742- 1753
doi: 10.1002/eji.v41.6
[1] 陈志强,米贤军,陈昂,段立锋,代新珍,邓文同. 免疫组织化学法检测子宫颈组织p16蛋白表达的石蜡切片厚度探讨[J]. 浙江大学学报(医学版), 2018, 47(4): 362-366.
[2] 狄晨红,金帆. 密封蛋白4与高危型人乳头瘤病毒联合检测对于高级别鳞状上皮内病变及宫颈鳞癌的诊断价值[J]. 浙江大学学报(医学版), 2018, 47(4): 344-350.
[3] 姚国荣,傅云峰,李艳丽,周彩云,吕卫国. 卵巢上皮性癌组织中DNAJB11的表达及临床意义[J]. 浙江大学学报(医学版), 2017, 46(2): 173-178.
[4] 管琼峰,张力三,洪文轲,杨怡,陈昭英,张丹,胡兴越. 视频头脉冲试验在周围性眩晕患者中的应用[J]. 浙江大学学报(医学版), 2017, 46(1): 52-58.
[5] 蔡成,王建平,钟志凤,戴志慧,王庆华,董武真,施红旗,刘庆伟,杜金林. 缺氧诱导因子1α和CD133预测直肠癌患者新辅助放化疗疗效的临床研究[J]. 浙江大学学报(医学版), 2017, 46(1): 36-43.
[6] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[7] 郑江江 等. 肿瘤相关成纤维细胞CD10表达在结直肠腺瘤癌变和复发中的意义[J]. 浙江大学学报(医学版), 2016, 45(4): 335-341.
[8] 来茂德. 胃肠胰神经内分泌肿瘤的认识和问题[J]. 浙江大学学报(医学版), 2016, 45(1): 5-9,23.
[9] 杨燕, 李玉梅, 张娜, 李皖云, 欧玉荣, 汪蕊, 赵福友, 吴穷. 缝隙连接蛋白26在肝细胞癌组织的表达及意义[J]. 浙江大学学报(医学版), 2015, 44(5): 517-524.
[10] 林开清, 朱丽波, 张信美, 林俊. 肥大细胞在雌激素介导的子宫内膜异位症中的作用机制研究[J]. 浙江大学学报(医学版), 2015, 44(3): 269-277.
[11] 刘学红, 张泳, 刘传康. 神经元特异性烯醇化酶和突触素在人胚胎食管组织发育阶段的表达[J]. 浙江大学学报(医学版), 2015, 44(2): 184-188.
[12] 易战雄,张炜. X线照射大脑对幼鼠学习记忆能力的影响[J]. 浙江大学学报(医学版), 2014, 43(5): 535-.
[13] 欧玉荣,等. 分泌型卷曲相关蛋白1、β联蛋白、上皮钙黏着蛋白在结直肠癌中的表达及意义[J]. 浙江大学学报(医学版), 2014, 43(4): 397-405.
[14] 金淑清,等. 组织PBX2/ELF2表达水平与非小细胞肺癌患者预后相关性分析[J]. 浙江大学学报(医学版), 2014, 43(4): 413-419.
[15] 王庆飞,等. 两种ErbB2/Neu阳性-PTEN缺失乳腺癌基因工程小鼠模型的建立及其生物学特征比较[J]. 浙江大学学报(医学版), 2014, 43(4): 427-433.