Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (6): 750-757    DOI: 10.3785/j.issn.1008-9292.2020.12.10
原著     
敲除Sirt3后激活自噬对阿尔茨海默病有保护作用
舒敏1(),张文哲1,金湘博1,曾玲晖1,*(),项迎春2,*()
1. 浙大城市学院医学院, 浙江 杭州 310015
2. 浙江医院药剂科, 浙江 杭州 310012
Sirt3 gene knockout protects mice from Alzheimer's disease through activating autophagy
SHU Min1(),ZHANG Wenzhe1,JIN Xiangbo1,ZENG Linghui1,*(),XIANG Yingchun2,*()
1. School of Medicine, Zhejiang University City College, Hangzhou 310015, China
2. Department of Pharmacy, Zhejiang Hospital, Hangzhou 310012, China
 全文: PDF(1162 KB)   HTML( 8 )
摘要:

目的: 探究Sirt3在阿尔茨海默病(AD)发生发展中的作用及可能机制。方法: 体内实验以C57BL/6野生型小鼠和Sirt3基因敲除小鼠为对象,采用腹腔注射D-半乳糖联合脑定位注射β-淀粉样蛋白(Aβ)1-40建立AD小鼠模型。莫里斯(Morris)水迷宫实验、自发活动开场实验和悬尾实验观察造模前后小鼠学习记忆和焦虑抑郁状态的改变,免疫荧光染色观察脑内海马区域Aβ沉积情况,蛋白质印迹法检测小鼠脑组织中自噬和凋亡相关蛋白表达。体外实验选小鼠皮层原代细胞作为对象,给予Aβ1-40建立AD体外模型,MTT法检测细胞活性。结果: 体内实验结果显示,野生型小鼠诱发AD后平台潜伏期延长(P < 0.05),穿越平台次数减少、目标象限停留时间缩短(均P < 0.05),提示造模后小鼠的学习记忆能力下降;而Sirt3敲除能够缓解AD所致的学习记忆障碍(均P < 0.05)。相较于野生型小鼠,Sirt3基因敲除小鼠脑内海马区域的Aβ沉积减少(P < 0.05),凋亡蛋白cleaved caspase 3表达减少(P < 0.05)。另外,野生型小鼠诱发AD后LC3-Ⅱ和P62蛋白表达增加(均P < 0.05),提示自噬流受阻;而Sirt3基因敲除小鼠诱发AD后LC3-Ⅱ蛋白表达增加,P62蛋白表达减少(均P < 0.05),提示自噬被激活。小鼠皮层原代细胞AD模型中,Sirt3基因敲除的细胞较野生型细胞死亡减少(P < 0.05);加用自噬抑制剂氯喹后,Sirt3基因敲除的保护作用消失(P < 0.05)。结论: Sirt3敲除对于D-半乳糖联合Aβ1-40诱发的AD有保护作用,这种保护作用可能与自噬流活化有关。

关键词: 阿尔茨海默病Sirt3自噬β-淀粉样蛋白学习记忆小鼠    
Abstract:

Objective: To investigate the protective effect of Sirt3 gene knockout on Alzheimer's disease (AD) in mice. Methods: The animal model of AD was established by intraperitoneal injection of D-galactose and brain-localized injection of amyloid β-protein (Aβ)1-40 in wild type C57BL/6 mice and Sirt3 gene knockout mice. Morris water maze, Y maze and tail suspension test were used to assess the cognitive function and anxiety-like behaviors in mice. Aβ deposition in the hippocampus was detected by immunofluorescent staining. Western blotting analysis was conducted to detect the expression of related proteins in the brain. Mouse cortical primary neurons were cultured and AD cell model was established. MTT assay was used to detect cell viability after modeling. Results: Behavioral results showed that cognitive deficits were found in wide type mice after induction of AD as its prolonged escape latency (P < 0.05) and decreased crossing number of platform and target zone duration (all P < 0.05); while the knockout of Sirt3 alleviated cognitive deficit induced by AD (all P < 0.05). Aβ immunofluorescence staining showed that the deposition of Aβ in the hippocampal region and expression of cleaved caspase 3 in the brain in Sirt3 knockout mice was reduced compared with that of wild type mice (all P < 0.05). The expression of LC3-Ⅱ and P62 increased after AD was induced in wild type mice, while the autophagy in Sirt3 knockout mice was activated as the increase expression of LC3-Ⅱ and decrease expression of P62 (all P < 0.05). In the AD cell model, the results of MTT assay were consistent with the animal experiments, and the protective effect of Sirt3 knockdown was eliminated after the treatment of the autophagy inhibitor chloroquine (all P < 0.05). Conclusion: The knockdown of Sirt3 shows a protective effect on AD induced by D-galactose and Aβ1-40 in mice, which may be related to its function of activating autophagy.

Key words: Alzheimer's disease    Sirt3    Autophagy    Amyloid β-protein    Learning    Memory    Mice
收稿日期: 2020-09-20 出版日期: 2021-01-14
CLC:  R741.02  
基金资助: 浙江省科技计划项目(2018C37131);2018年度高层次留学回国人员(团队)在杭创新创业项目
通讯作者: 曾玲晖,项迎春     E-mail: shumin123@zju.edu.cn;zenglh@zucc.edu.cn;xych999@126.com
作者简介: 舒敏(1996-), 女, 硕士研究生, 主要从事神经系统疾病研究; E-mail:shumin123@zju.edu.cn; https://orcid.org/0000-0001-9119-5103
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
舒敏
张文哲
金湘博
曾玲晖
项迎春

引用本文:

舒敏,张文哲,金湘博,曾玲晖,项迎春. 敲除Sirt3后激活自噬对阿尔茨海默病有保护作用[J]. 浙江大学学报(医学版), 2020, 49(6): 750-757.

SHU Min,ZHANG Wenzhe,JIN Xiangbo,ZENG Linghui,XIANG Yingchun. Sirt3 gene knockout protects mice from Alzheimer's disease through activating autophagy. J Zhejiang Univ (Med Sci), 2020, 49(6): 750-757.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.12.10        http://www.zjujournals.com/med/CN/Y2020/V49/I6/750

组别 n 平台潜伏期(s) 穿越平台次数 目标象限停留时间(s) 平均游泳速度(cm/s)
与野生型对照组比较,*P<0.05;与野生型模型组比较,#P<0.05.
野生型对照组 7 36.6±11.9 4.7±1.3 40.3±4.1 18.6±1.2
基因敲除对照组 7 29.8±12.4 4.6±1.3 40.8±5.6 15.8±2.5
野生型模型组 9 67.2±8.7* 1.0±0.4* 21.0±5.7* 14.6±2.4
基因敲除模型组 7 32.8±8.0# 3.0±0.9# 34.3±5.1 19.1±1.6
表 1  野生型小鼠和Sirt3基因敲除小鼠诱发阿尔茨海默病前后莫里斯水迷宫实验结果
组别 n 跨格次数 站立次数 静止时间所占比例(%)
与野生型对照组比较,*P<0.05;与野生型模型组比较,#P<0.05.
野生型对照组 7 48±11 1.14±0.49 22±5
基因敲除对照组 7 41±9 0.80±0.34 21±3
野生型模型组 9 22±3* 0.30±0.11* 30±5
基因敲除模型组 7 37±6# 0.42±0.17 25±5
表 2  野生型小鼠和Sirt3基因敲除小鼠诱发阿尔茨海默病前后自发活动开场实验和悬尾实验结果
图 1  野生型小鼠和Sirt3基因敲除小鼠诱发阿尔茨海默病后海马组织β-淀粉样蛋白沉积情况
图 2  野生型小鼠和Sirt3基因敲除小鼠诱发阿尔茨海默病后凋亡和自噬相关蛋白电泳图
组别 n cleaved caspase 3 LC3-Ⅱ/LC3-Ⅰ P62
与野生型对照组比较,*P<0.05;与基因敲除对照组比较,#P<0.05;与野生型模型组比较,ΔP<0.05.
野生型对照组 3 1.00 1.00 1.00
基因敲除对照组 3 1.05±0.07 1.04±0.23 1.13±0.09
野生型模型组 3 1.63±0.10* 1.67±0.21* 1.29±0.18*
基因敲除模型组 3 1.16±0.15Δ 2.03±0.35# 0.80±0.10
表 3  野生型小鼠和Sirt3基因敲除小鼠诱发阿尔茨海默病前后凋亡和自噬相关蛋白表达量比较
图 3  不同处理后小鼠阿尔茨海默病模型细胞活性变化(n=3)
1 COSTANZO M , ZURZOLO C . The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration[J]. Biochem J, 2013, 452 (1): 1- 17
doi: 10.1042/BJ20121898
2 KRSTIC D , KNUESEL I . Deciphering the mechanism underlying late-onset Alzheimer disease[J]. Nat Rev Neurol, 2013, 9 (1): 25- 34
doi: 10.1038/nrneurol.2012.236
3 KAUSHIK S , CUERVO A M . Chaperone-mediated autophagy: a unique way to enter the lysosome world[J]. Trends Cell Biol, 2012, 22 (8): 407- 417
doi: 10.1016/j.tcb.2012.05.006
4 TAKáTS S , JUHáSZ G . A genetic model with specifically impaired autophagosome-lysosome fusion[J]. Autophagy, 2013, 9 (8): 1251- 1252
doi: 10.4161/auto.25470
5 HAIGIS M C , SINCLAIR D A . Mammalian sirtuins: biological insights and disease relevance[J]. Annu Rev Pathol, 2010, 5:253- 295
doi: 10.1146/annurev.pathol.4.110807.092250
6 BAUSE A S , HAIGIS M C . SIRT3 regulation of mitochondrial oxidative stress[J]. Exp Gerontol, 2013, 48 (7): 634- 639
doi: 10.1016/j.exger.2012.08.007
7 DONMEZ G , OUTEIRO T F . SIRT1 and SIRT2: emerging targets in neurodegeneration[J]. EMBO Mol Med, 2013, 5 (3): 344- 352
doi: 10.1002/emmm.201302451
8 RAMADORI G , LEE C E , BOOKOUT A L et al. Brain SIRT1: anatomical distribution and regulation by energy availability[J]. J Neurosci, 2008, 28 (40): 9989- 9996
doi: 10.1523/JNEUROSCI.3257-08.2008
9 NORTH B J , VERDIN E . Sirtuins: Sir2-related NAD-dependent protein deacetylases[J]. Genome Biol, 2004, 5 (5): 224
doi: 10.1186/gb-2004-5-5-224
10 LI S , DOU X , NING H et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity[J]. Hepatology, 2017, 66 (3): 936- 952
doi: 10.1002/hep.29229
11 ZHANG M , DENG Y N , ZHANG J Y et al. SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway[J]. Aging Dis, 2018, 9 (2): 273- 286
doi: 10.14336/AD.2017.0517
12 秦川, 吴善球, 陈保生 et al. 灵芝制剂治疗APP/PS-1阿尔茨海默病转基因小鼠模型的病理学改变[J]. 中国医学科学院学报, 2017, 39 (4): 552- 561
QIN Chuan , WU Shanqiu , CHEN Baosheng et al. Pathological changes in APP/PS-1 transgenic mouse models of Alzheimer's disease treated with ganoderma lucidum preparation[J]. Acta Academiae Medicinae Sinicae, 2017, 39 (4): 552- 561
doi: 10.3881/j.issn.1000-503X.2017.04.015
13 SUN C , OU X , FARLEY J M et al. Allopregnanolone increases the number of dopaminergic neurons in substantia nigra of a triple transgenic mouse model of Alzheimer's disease[J]. Curr Alzheimer Res, 2012, 9 (4): 473- 480
doi: 10.2174/156720512800492567
14 YANG W , SHI L , CHEN L et al. Protective effects of perindopril on d-galactose and aluminum trichloride induced neurotoxicity via the apoptosis of mitochondria-mediated intrinsic pathway in the hippocampus of mice[J]. Brain Res Bull, 2014, 109:46- 53
doi: 10.1016/j.brainresbull.2014.09.010
15 HUANG Y , SHEN W , SU J et al. Modulating the balance of synaptic and extrasynaptic nmda receptors shows positive effects against amyloid-β-induced neurotoxicity[J]. J Alzheimers Dis, 2017, 57 (3): 885- 897
doi: 10.3233/JAD-161186
16 HAN P C , YIN J , TANG Z et al. Pituitary adenylate cyclise-activating polypeptide (PACAP) protects against beta-amyloid toxicity and potentiates mitochondrial function[J]. Alzhe & Demen, 2013, 9 (4): P355
doi: 10.1016/j.jalz.2013.05.672
17 WEIR H J , MURRAY T K , KEHOE P G et al. CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease[J]. PLoS One, 2012, 7 (11): e48225
doi: 10.1371/journal.pone.0048225
18 YIN J X , TURNER G H , LIN H J et al. Deficits in spatial learning and memory is associated with hippocampal volume loss in aged apolipoprotein E4 mice[J]. J Alzheimers Dis, 2011, 27 (1): 89- 98
doi: 10.3233/JAD-2011-110479
19 CHEN H K , JI Z S , DODSON S E et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease[J]. J Biol Chem, 2011, 286 (7): 5215- 5221
doi: 10.1074/jbc.M110.151084
20 YIN J X , NIELSEN M , CARCIONET et al. Apolipoprotein E regulates mitochondrial function through the PGC-1α-sirtuin 3 pathway[J]. Aging (Albany NY), 2019, 11 (23): 11148- 11156
doi: 10.18632/aging.102516
21 YIN J , NIELSEN M , LI S et al. Ketones improves apolipoprotein E4-related memory deficiency via sirtuin 3[J]. Aging (Albany NY), 2019, 11 (13): 4579- 4586
doi: 10.18632/aging.102070
22 KROEMER G . Autophagy: a druggable process that is deregulated in aging and human disease[J]. J Clin Invest, 2015, 125 (1): 1- 4
doi: 10.1172/JCI78652
23 LEVINE B , KROEMER G . Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132 (1): 27- 42
doi: 10.1016/j.cell.2007.12.018
24 MENZIES F M , FLEMING A , RUBINSZTEIN D C . Compromised autophagy and neurodegenerative diseases[J]. Nat Rev Neurosci, 2015, 16 (6): 345- 357
doi: 10.1038/nrn3961
25 SU H , WANG X . P62 stages an interplay between the ubiquitin-proteasome system and autophagy in the heart of defense against proteotoxic stress[J]. Trends Cardiovasc Med, 2011, 21 (8): 224- 228
doi: 10.1016/j.tcm.2012.05.015
26 ZAFFAGNINI G , SAVOVA A , DANIELI A et al. P62 filaments capture and present ubiquitinated cargos for autophagy[J]. EMBO J, 2018, 37 (5): e98308
doi: 10.15252/embj.201798308
[1] 陈青青,单超文,苏洁,陈炜,朱加明,陈素红,吕圭源. 无比山药丸对氢化可的松致肾阳虚模型小鼠性功能的影响[J]. 浙江大学学报(医学版), 2020, 49(6): 697-704.
[2] 王华英, 吕佳佩, 陈丽萍, 俞万钧. 趋化因子CXCL12可能参与白细胞介素17A对小鼠肺成纤维细胞的活化[J]. 浙江大学学报(医学版), 2020, 49(6): 758-764.
[3] 严敏,汪旭,郭锡汉. 早老蛋白1功能缺失性突变导致家族性阿尔茨海默病的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 487-499.
[4] 俞洁,许均瑜. 神经配蛋白及其水解产物的功能[J]. 浙江大学学报(医学版), 2020, 49(4): 514-523.
[5] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[6] 郑涌泉,章晓茜,陈久霞,周琦,高红昌. 早期阿尔茨海默病小鼠尿液核磁共振氢谱代谢组学研究[J]. 浙江大学学报(医学版), 2018, 47(6): 636-642.
[7] 赵慧慧,汤慧芳. 基于基因敲除的炎性肠疾病复合动物模型研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 665-670.
[8] 王青梅,舒敏,徐千姿,谢一乙,阮盛哲,王健达,曾玲晖. 和厚朴酚对癫痫小鼠学习记忆能力的改善作用[J]. 浙江大学学报(医学版), 2018, 47(5): 450-456.
[9] 蔺莹,姚璎珈,梁喜才,时悦,孔亮,肖洪贺,吴雨桐,倪颖男,杨静娴. 蛇床子素通过上调微RNA-101a-3p抑制阿尔茨海默病细胞淀粉样前体蛋白表达[J]. 浙江大学学报(医学版), 2018, 47(5): 473-479.
[10] 朱锋,范苗,徐孜惟,蔡依廷,陈益臻,余双,曾玲晖. 雷帕霉素对帕金森病小鼠的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 465-472.
[11] 吴忧,梁顺利,徐彬,张荣博,徐林胜. 姜黄素保护帕金森病多巴胺能神经元的机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 480-486.
[12] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[13] 魏振龙,石文贵,陈克明,周建,王鸣刚. 淫羊藿素通过CXCR4/SDF-1信号通路促进小鼠成骨细胞成熟和矿化[J]. 浙江大学学报(医学版), 2017, 46(6): 571-577.
[14] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[15] 陈达华 等. CRISPR/Cas9基因编辑技术构建靶向敲除小鼠微小RNA-101a基因的一体化载体系统[J]. 浙江大学学报(医学版), 2017, 46(4): 427-432.