Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (6): 732-742    DOI: 10.3785/j.issn.1008-9292.2020.12.08
原著     
革兰阳性菌及革兰阴性菌感染脓毒症患者外周血单个核细胞关键基因鉴定及共表达网络分析
李璐1(),方俊君2,李志涛2,沈磊星3,王国彬2,*(),傅水桥2,*()
1. 浙江大学医学院附属第一医院临床药学部, 浙江 杭州 310003
2. 浙江大学医学院附属第一医院外科重症监护室, 浙江 杭州 310003
3. 浙江大学城市学院药学院, 浙江 杭州 310015
Master genes and co-expression network analysis in peripheral blood mononuclear cells of patients with gram-positive and gram-negative sepsis
LI Lu1(),FANG Junjun2,LI Zhitao2,SHEN Leixing3,WANG Guobin2,*(),FU Shuiqiao2,*()
1. Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
2. Surgical Intensive Care Unit, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
3. School of Pharmaceutical Sciences, Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1532 KB)   HTML( 8 )
摘要:

目的: 探讨革兰阳性菌与革兰阴性菌感染脓毒症患者相关的生物标志物。方法: 在美国国立生物技术信息中心平台获取GSE9960表达谱芯片,包含16例非感染全身炎症反应综合征(SIRS)患者外周血单个核细胞(PBMC)样本,17例革兰阳性菌感染脓毒症患者PBMC样本,以及18例革兰阴性菌感染脓毒症患者PBMC样本。利用基因集富集分析和加权基因共表达网络分析探索GSE9960基因表达谱芯片中革兰阳性菌感染与革兰阴性菌感染脓毒症富集功能通路与共表达网络模块,并对高度相关模块进行通路注释。利用R语言分析革兰阳性菌与革兰阴性菌感染脓毒症中差异表达基因,探索差异表达基因蛋白-蛋白相互作用网络。将高度相关模块中的枢纽基因与差异表达基因重叠,确定为主要差异表达基因,并进一步针对主要差异表达基因在临床样本中进行验证。结果: 革兰阳性菌感染脓毒症与革兰阴性菌感染脓毒症间富集通路存在显著差异,非感染SIRS和革兰阴性菌感染脓毒症存在相反的共表达网络;而革兰阳性菌感染和革兰阴性菌感染脓毒症存在完全不同的共表达网络。进一步在临床样本中验证显示,主要差异表达基因TYMS在革兰阳性菌感染脓毒症患者PBMC中显著上调(P < 0.05);CD3D在革兰阴性菌感染脓毒症中表达下调(P < 0.01),而IRAK3则显著上调(P < 0.05)。结论: 本研究结果有利于加深对不同细菌感染脓毒症发病机制的理解,并为脓毒症诊断、分型及经验性抗菌药物治疗提供潜在生物标志物。

关键词: 脓毒症全身炎症反应综合征革兰阳性菌革兰阴性菌外周血单个核细胞    
Abstract:

Objective: To investigate the functional pathways enriched and differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of patients with gram-positive and gram-negative sepsis. Methods: Dataset GSE9960 obtained from NCBI GEO database containing PBMC samples from 16 non-infectious systematic inflammatory response syndrome (SIRS) patients, 17 gram-positive septic patients and 18 gram-negative septic patients were included in the study. Functional pathway annotations were conducted by gene set enrichment analysis and weighted gene co-expression network analysis. DEGs were filtered and master DEGs were then validated in PBMCs of gram-positive septic, gram-negative septic and non-infectious SIRS patients. Results: The enriched gene sets in gram-positive sepsis and gram-negative sepsis were significantly different. The results indicated the opposite co-expression networks in SIRS and gram-negative sepsis, and the entirely different co-expression networks in gram-positive and gram-negative sepsis. Furthermore, we validated that TYMS was up-regulated in gram-positive sepsis (P < 0.05), CD3D was down-regulated in gram-negative sepsis (P < 0.01), while IRAK3 was up-regulated in gram-negative sepsis (P < 0.05). Conclusion: The results indicate that there are differences in the mechanism and pathogenesis of gram-positive and gram-negative sepsis, which may provide potential markers for sepsis diagnosis and empirical antimicrobial therapy.

Key words: Sepsis    Systemic inflammatory response syndrome    Gram-positive bacterium    Gram-negative bacterium    Peripheral blood mononuclear cell
收稿日期: 2020-08-13 出版日期: 2021-01-14
CLC:  R447  
基金资助: 浙江省自然科学基金(LYY20H280004);浙江省医药卫生科技计划(2020381061)
通讯作者: 王国彬,傅水桥     E-mail: lucille@zju.edu.cn;wgb8@163.com;2200048@zju.edu.cn
作者简介: 李璐(1988-), 女, 博士, 主管药师, 主要从事抗感染临床药学研究; E-mail:lucille@zju.edu.cn; https://orcid.org/0000-0003-4573-8538
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李璐
方俊君
李志涛
沈磊星
王国彬
傅水桥

引用本文:

李璐,方俊君,李志涛,沈磊星,王国彬,傅水桥. 革兰阳性菌及革兰阴性菌感染脓毒症患者外周血单个核细胞关键基因鉴定及共表达网络分析[J]. 浙江大学学报(医学版), 2020, 49(6): 732-742.

LI Lu,FANG Junjun,LI Zhitao,SHEN Leixing,WANG Guobin,FU Shuiqiao. Master genes and co-expression network analysis in peripheral blood mononuclear cells of patients with gram-positive and gram-negative sepsis. J Zhejiang Univ (Med Sci), 2020, 49(6): 732-742.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.12.08        http://www.zjujournals.com/med/CN/Y2020/V49/I6/732

基因 引物序列(5′→3′)
TYMS GAGCTGTCTTCCAAGGGAGT
CAACTCCCTGTCCTGAATAATCTGA
DLGAP5 GTCGTCCAGACCGAGTGTTC
ATGAAGACATCCTGAGCCACC
CDKN3 ATGAAGCCGCCCAGTTCAAT
CCTGGAAGAGCACATAAACCG
CD3D CATGGGTAGAGGGAACGGTG
ACAGCTCTGGCACATTCGAT
TRAC ACAGGAAAAGCACAGCTCCC
ACAGCACAGATGTAGACGGC
LCK GGAGCTGGGACCCCCTATTT
AGCCCATGGTCCCTGAGATT
KIF1B CACCTCGATGCGGTGCC
ACAGCCAAGTTTCCTCAGCC
LIN7A ACTACGAGCGGTTGCTGATG
TCAATTGCTCTTGCAACATCTCTG
IRAK3 TTGGTCCTGGGCACAGAAAA
GGACTCAACACTGCTCCATAGT
GAPDH GCACCGTCAAGGCTGAGAAC
TGGTGAAGACGCCAGTGGA
表 1  实时逆转录PCR引物序列
图 1  革兰阳性菌与革兰阴性菌感染脓毒症的基因集富集分析图
图 2  加权基因共表达网络分析革兰阳性菌感染与革兰阴性菌感染脓毒症的共表达网络
图 3  革兰阳性菌和革兰阴性菌感染脓毒症高度相关模块基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集结果
模块 枢纽基因
棕色模块 SAMD8TLR6IFRD1IL17RAPCYT1APRO2852FCER1GRNF149SLC12A6FAM160A2CAMKK2GALNT3COL4A3BPSTAT5BRNASELMYO1FALPK1C1RLFAM126BVPS37BTSPODENND5ALIMK2SLC2A14PPP1R10PGK1DNTTIP1MKNK1RNF24ARL8AMSL1ERI1SDF2TLR8GYG1RP11-295G20.2ZNF467LOC101928676ZBTB34UBXN2BOSBPL2TUBA1AFAM53CRBMS1NBEAL2HIP1ARL11XPO6CEBPBTMCO3CTBSSELPLGIL10RBDYSFMTF1GNAQGAS7SLC2A3KIF1BCCDC126IQGAP1RHOGIFNAR1PGM2STAT3RNF13PRKCDPECRRGS3SNX11SLMAPNDUFB3RRAGCNUPL1NFIL3NCF4MAP3K5APOBRSTX3FLOT2SKAP2TSEN34PPP4R1SLCO3A1FPR2CSNK1DUPP1CHSY1MEF2AHK3IRAK3SIPA1PHF20L1PLIN3SLC25A44RTFDC1CKLFATP6V1C1EIF4E3PIK3CGTLE3CHMP2AFPR1PTBP3LINC01000RGS19NRBF2ZNF281TLR1CHMP2BATXN1GLT1D1CFLARNCF2LYNKLF7THOC5LIN7ARIT1JMJD6FAM160B1ARID3AARPC2FAM129AC17orf62FLOT1BNIP2EXOC6PGS1PXKSVILPFKFB4WDFY3RALBH3F3AHCKC4orf3BIN2CANT1GNAI3LPCAT2LILRB3LPGAT1RFWD2FNDC3BLCP1PRR13TMEM260BTBD10GNG5CD58SHOC2CSF3RGMFGCAP1BAZ1AAGO4AGPAT9S100A11PJA2RLIMALOX5ZNF438RARA-AS1RPS6KA1OSTF1TMEM120AHSDL2PPP1R12AHN1C20orf24PORDENND3CKLFFRAT2NINCAB39YIPF1
黄色模块 ZBTB25GSPT2NDUFAF4LINC00263ZNF84IL32CD3GMAGEH1ITM2ASLC4A7CLEC2DJMYTRAF5NMT2TRIB2KPNA5PLEKHA1IFFO2TRMT13RASGRP1LPIN1PTPRCAPPJA1CD3DPRKCQTHEM4LYRM7SIDT1ZNF32CD247DIS3L2NFATC2BCL11BPPP1R16BZNF420TRBC1NR1D2ARL4CEVLLY9TRACKIF3ATRACZNF286ASKAP1ZAP70LCKDYRK2
粉色模块 OAS3DDX60IFIT5HERC5OASLXAF1OAS2IFI44ISG15HERC6PARP14DTX3LIFIT1APOL6
绿色模块 CDC6RMI2WDHD1WDR34KIFC1UBE2CAUNIPIQGAP3KIF18ABRCA2CDKN3KIAA0101STILNCAPG2GINS3TRIP13SKA1CEBPECRNDECASC5ANKRD18ACEP55MCM10KIAA1524STMN1GTSE1ZWINTLOC81691UBE2TPLS1BUB1NEK2AURKAASPMORC1ESPL1AURKBSUV39H2HMMRTYMSCDC20CENPEZNF788CCNB1GINS1PRC1BRIP1SLC27A2MELKCDT1CDCA8RAD51AP1TCF19SHCBP1UHRF1MND1CDC45DLGAP5KIF20AKIF4AKIF14POLE2FANCIKIF2CCCNA2POLQCENPAFOXM1DTLCHEK1TMEM52BDEPDC1SPAG5NUF2NUSAP1CDCA2HJURPBIRC5NCAPHTPX2NEIL3E2F8TTKTOP2AKIF11DEPDC1BNCAPGANLNMKI67PLK4CDCA5BUB1BCCNE2CDK1SPC25RAD51TK1KIF15KIF18BOIP5CDCA3
表 2  革兰阳性菌感染与革兰阴性菌感染脓毒症共表达网络相关模块中的枢纽基因
差异表达基因 Log2差异表达倍数 P
RP3-525N10.2 -1.048 38 0.006 96
LOC102723918 -0.919 58 0.013 90
TPPP3 -0.747 88 0.002 80
LILRA3 -0.653 51 0.026 59
RRM2 1.173 583 0.029 91
CAMP 1.197 064 0.003 51
PRTN3 1.268 915 0.047 43
MS4A3 1.438 127 0.023 52
DEFA4 1.610 488 0.019 22
表 3  革兰阳性菌感染脓毒症差异表达的4个下调基因和前5个上调基因
差异表达基因 Log2差异表达倍数 P
 MME -0.995 18 0.027 26
 TRAT1 -0.965 96 0.024 00
 GZMK -0.959 53 0.017 14
 LOC389834 -0.948 3 0.014 10
 EPSTI1 -0.868 45 0.035 92
 EMR1 1.107 529 0.000 66
 CA4 1.108 643 0.043 22
 C1QA 1.108 892 0.007 54
 GPR84 1.206 834 0.019 91
 FGF13 1.539 863 0.022 74
表 4  革兰阴性菌感染脓毒症差异表达的前5个上调基因和前5个下调基因
图 4  革兰阳性菌感染和革兰阴性菌感染脓毒症差异表达基因蛋白-蛋白相互作用网路及功能通路注释
图 5  主要差异表达基因在患者外周血单个核细胞中的验证结果
1 SINGER M , DEUTSCHMAN C S , SEYMOUR C W et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315 (8): 801- 810
doi: 10.1001/jama.2016.0287
2 RHODES A , EVANS L E , ALHAZZANI W et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016[J]. Intensive Care Med, 2017, 43 (3): 304- 377
doi: 10.1007/s00134-017-4683-6
3 RUDD K E , JOHNSON S C , AGESA K M et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395 (10219): 200- 211
doi: 10.1016/S0140-6736(19)32989-7
4 BONE R C , BALK R A , CERRA F B et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine[J]. Chest, 1992, 101 (6): 1644- 1655
doi: 10.1378/chest.101.6.1644
5 GLIK J , KAWECKI M , GA?DZIK T et al. The impact of the types of microorganisms isolated from blood and wounds on the results of treatment in burn patients with sepsis[J]. Pol Przegl Chir, 2012, 84 (1): 6- 16
doi: 10.2478/v10035-012-0002-7
6 BOLDRICK J C , ALIZADEH A A , DIEHN M et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria[J]. Proc Natl Acad Sci U S A, 2002, 99 (2): 972- 977
doi: 10.1073/pnas.231625398
7 TANG B M , MCLEAN A S , DAWES I W et al. Gene-expression profiling of peripheral blood mononuclear cells in sepsis[J]. Crit Care Med, 2009, 37 (3): 882- 888
doi: 10.1097/CCM.0b013e31819b52fd
8 YU G , WANG L G , HAN Y et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16 (5): 284- 287
doi: 10.1089/omi.2011.0118
9 NIU X , ZHANG J , ZHANG L et al. Weighted gene co-expression network analysis identifies critical genes in the development of heart failure after acute myocardial infarction[J]. Front Genet, 2019, 10:1214
doi: 10.3389/fgene.2019.01214
10 TANG B M , MCLEAN A S , DAWES I W et al. Gene-expression profiling of gram-positive and gram-negative sepsis in critically ill patients[J]. Crit Care Med, 2008, 36 (4): 1125- 1128
doi: 10.1097/CCM.0b013e3181692c0b
11 LI Z , ZHANG Y , LIU Y et al. Identification of key genes in gram-positive and gram-negative sepsis using stochastic perturbation[J]. Mol Med Rep, 2017, 16 (3): 3133- 3146
doi: 10.3892/mmr.2017.7013
12 WANG H , WANG X , XU L et al. High expression levels of pyrimidine metabolic rate-limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets[J]. Purinergic Signal, 2020, 16 (3): 347- 366
doi: 10.1007/s11302-020-09711-4
13 MARSH S . Thymidylate synthase pharmacogenetics[J]. Invest New Drugs, 2005, 23 (6): 533- 537
doi: 10.1007/s10637-005-4021-7
14 LEE S Y , MCLEOD H L . Pharmacogenetic tests in cancer chemotherapy: what physicians should know for clinical application[J]. J Pathol, 2011, 223 (1): 15- 27
doi: 10.1002/path.2766
15 ALMANSA R , HEREDIA-RODRíGUEZ M , GOMEZ-SANCHEZ E et al. Transcriptomic correlates of organ failure extent in sepsis[J]. J Infect, 2015, 70 (5): 445- 456
doi: 10.1016/j.jinf.2014.12.010
16 ZHANG C J , JIANG M , ZHOU H et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation[J]. J Clin Invest, 2018, 128 (12): 5399- 5412
doi: 10.1172/JCI121901
17 BERCLAZ P Y , CAREY B , FILLIPI M D et al. GM-CSF regulates a PU.1-dependent transcriptional program determining the pulmonary response to LPS[J]. Am J Respir Cell Mol Biol, 2007, 36 (1): 114- 121
doi: 10.1165/rcmb.2006-0174OC
[1] 杨静娟,吴峰峰,陈江华,杨毅. 脓毒性急性肾损伤小鼠线粒体DNA损伤修复相关基因的筛选[J]. 浙江大学学报(医学版), 2018, 47(1): 41-50.
[2] 方敏波 等. 瞬时受体电位通道M2外显子单核苷酸多态性rs1556314与脓毒症的相关性分析[J]. 浙江大学学报(医学版), 2016, 45(4): 410-415.
[3] 杨婉花等. MicroRNA-150联合脉搏指示连续性心输出量检测指标判断脓毒症休克患者预后的临床价值[J]. 浙江大学学报(医学版), 2015, 44(6): 659-664.
[4] 韩亮, 侯金超, 方向明. 苏拉明对脓毒症小鼠肺组织和循环炎症反应的抑制作用[J]. 浙江大学学报(医学版), 2015, 44(5): 553-558.
[5] . 酵母多糖致全身炎症反应综合征大鼠模型的制备[J]. 浙江大学学报(医学版), 2011, 40(6): 641-646.
[6] 方向明. 脓毒症的防治策略[J]. 浙江大学学报(医学版), 2010, 39(5): 451-453.
[7] 张宁,邱泽亮,程宝莉,金悦,徐俊龙,楼天正. 早期高容量血液滤过对重症脓毒症的影响[J]. 浙江大学学报(医学版), 2010, 39(5): 483-486.
[8] 谢克亮,侯立朝,王国林,熊利泽. 氢气吸入对重度脓毒症小鼠血清高迁移率族蛋白B1水平的影响[J]. 浙江大学学报(医学版), 2010, 39(5): 454-457.
[9] 李会,方向明. 炎性体在脓毒症中作用的研究进展[J]. 浙江大学学报(医学版), 2010, 39(5): 487-492.
[10] 方雪玲,章云涛,方强,卢阳珍,傅素珍. 静脉营养对重症脓毒症患者血氨基酸谱及免疫的影响[J]. 浙江大学学报(医学版), 2007, 36(3): 298-302.
[11] 徐笑益;石卓;鲍军明;顾伟忠;姚航平;陈智;高敏;方向明. 重组β-防御素2多肽对脓毒症大鼠肺组织细胞凋亡的影响[J]. 浙江大学学报(医学版), 2006, 35(6): 600-604.
[12] 石卓;赵正言;舒强;陈智;姚航平;方向明. 重组β-防御素2在脓毒症所致大鼠急性肺损伤发生发展中的作用[J]. 浙江大学学报(医学版), 2006, 35(6): 605-609.