Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (6): 705-713    DOI: 10.3785/j.issn.1008-9292.2020.12.05
专题报道     
玄参环烯醚萜苷对氧糖剥夺再灌注细胞模型内质网钙稳态的调控作用
叶嘉仪(),龚恒佩,王凌峰,黄真,仇凤梅,钟晓明*()
浙江中医药大学药学院, 浙江 杭州 311402
Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model
YE Jiayi(),GONG Hengpei,WANG Lingfeng,HUANG Zhen,QIU Fengmei,ZHONG Xiaoming*()
College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, China
 全文: PDF(1295 KB)   HTML( 11 )
摘要:

目的: 阐明玄参环烯醚萜苷(IGRS)基于调控内质网应激反应对抗脑缺血再灌注损伤的作用及机制。方法: 采用IGRS(50、100、200 μg/mL)预处理PC12细胞24 h,然后构建氧糖剥夺/再灌注(OGD/R)细胞模型。MTT法检测细胞存活率,细胞内乳酸脱氢酶(LDH)释放法检测细胞损伤程度;流式细胞术检测细胞凋亡率,蛋白质印迹法检测B细胞淋巴瘤-2(Bcl-2)、Bcl-2相关X蛋白(Bax)、C/EBP同源蛋白(CHOP)、半胱氨酸天冬氨酸蛋白酶12(caspase-12)、葡萄糖调节蛋白78(GRP78)水平;实时逆转录PCR法检测肌浆网钙泵2(SERCA2)、1,4,5-三磷酸肌醇受体1(IP3R1)、兰尼碱受体2(RyR2)mRNA表达;激光共聚焦显微镜观察细胞质中的游离钙离子浓度。结果: IGRS预处理可以提高OGD/R细胞存活率、减少LDH释放(均P < 0.01);降低细胞凋亡率,抑制GRP78、CHOP,Bax和caspase-12蛋白表达(均P < 0.01),上调Bcl-2和Bcl-2/Bax(均P < 0.01),增加细胞SERCA2 mRNA表达(P < 0.01),降低游离钙离子浓度,下调RyR2和IP3R1 mRNA表达。结论: IGRS具有明确的神经保护作用,可能是通过调节SERCA2维持钙平衡,进而抑制内质网应激介导的细胞凋亡来减轻脑缺血再灌注损伤。

关键词: 玄参环烯醚萜苷氧糖剥夺/再灌注内质网应激钙稳态细胞凋亡细胞    
Abstract:

Objective: To investigate the regulatory effect of iridoid glycoside of radix scrophulariae (IGRS) on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model. Methods: Rat pheochromocytoma PC12 cells were pretreated with IGRS (50, 100, 200 μg/mL) for 24h, and the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R) was applied. The cell viability was determined by MTT and lactate dehydrogenase (LDH) assay. The apoptotic rate was detected by flow cytometry. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), C/EBP homologous protein (CHOP), caspase-12 protein, and glucose-regulated protein-78(GRP78)were detected by Western blotting. The mRNA expression levels of sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), 1, 4, 5-triphosphate inositol receptor 1 (IP3R1), and ryanodine receptor 2 (RyR2)were detected by real-time RT-PCR. Free Ca2+ concentration [Ca2+]i was determined by using laser scanning confocal microscopy. Results: The damage caused by OGD/R to PC12 cells was significantly reduced by IGRS, with significant effect on increasing survival rate and reducing LDH release (all P < 0.01). The expression of GRP78, CHOP, Bax, and caspase-12 were down-regulated (all P < 0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio was up-regulated (all P < 0.01); IGRS increased the expression of SERCA2 mRNA in PC12 cells after OGD/R injury (P < 0.01), decreased [Ca2+]i and down-regulated the expression of RyR2 mRNA and IP3R1 mRNA. Conclusion: IGRS has neuroprotective effect, which may alleviate cerebral ischemia-reperfusion injury by regulating SERCA2, maintaining calcium balance, and inhibiting endoplasmic reticulum stress-mediated apoptosis.

Key words: Iridoid glycosides of radix scrophulariae    Oxygen-glucose deprivation-reperfusion    Endoplasmic reticulum stress    Calcium homeostasis    Apoptosis    Cells
收稿日期: 2020-07-22 出版日期: 2021-01-14
CLC:  R285.5  
基金资助: 国家自然科学基金(81573643);浙江省自然科学基金(LY20H280010)
通讯作者: 钟晓明     E-mail: yejiayi0109@yeah.net;zxm_k6@sina.com
作者简介: 叶嘉仪(1997-), 女, 硕士研究生, 主要从事防治脑神经损伤药物的开发研究; E-mail:yejiayi0109@yeah.net; https://orcid.org/0000-0001-7460-1237
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
叶嘉仪
龚恒佩
王凌峰
黄真
仇凤梅
钟晓明

引用本文:

叶嘉仪,龚恒佩,王凌峰,黄真,仇凤梅,钟晓明. 玄参环烯醚萜苷对氧糖剥夺再灌注细胞模型内质网钙稳态的调控作用[J]. 浙江大学学报(医学版), 2020, 49(6): 705-713.

YE Jiayi,GONG Hengpei,WANG Lingfeng,HUANG Zhen,QIU Fengmei,ZHONG Xiaoming. Protective effect of iridoid glycosides of radix scrophulariae on endoplasmic reticulum stress induced by oxygen-glucose deprivation and reperfusion in vitro model. J Zhejiang Univ (Med Sci), 2020, 49(6): 705-713.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.12.05        http://www.zjujournals.com/med/CN/Y2020/V49/I6/705

引物名称 引物序列(5′→3′)
SERCA2:肌浆网钙泵2;IP3R1:1,4,5-三磷酸肌醇受体1;RyR2:兰尼碱受体2;GAPDH:甘油醛-3-磷酸脱氢酶.
SERCA2 正向:GTGAAGTGCCATCAGTATGACGG
反向:GTGAGAGCAGTCTCGGTAGCTT
IP3R1 正向:GAGCATTGTCACCACCTTCTTCAG
反向:GGCTTTCTGGCTCGGCATCAAC
RyR2 正向:CACTCCTCTATGGACACGCC
反向:CAAAGGCCAGTTTGTCGGTG
GAPDH 正向:ACAGCAACAGGGTGGTGAC
反向:TTTGAGGGTGCAGCGAACTT
表 1  实时逆转录PCR引物序列
组别 n 细胞存活率 乳酸脱氢酶释放量
与正常对照组比较,**P<0.01;与模型对照组比较,#P<0.05,##P<0.01.IGRS:玄参环烯醚萜苷.
正常对照组 3 100.00 100.00
尼莫地平对照组 3 102.68±3.50 108.07±4.89
IGRS对照组
  50 μg/mL 3 99.60±3.51 107.20±8.34
  100 μg/mL 3 101.35±2.55 111.44±4.24
  200 μg/mL 3 101.63±0.71 109.23±8.37
模型对照组 3 56.83±0.98** 172.63±4.59**
尼莫地平实验组 3 72.94±0.28## 134.68±5.15##
IGRS实验组
  50 μg/mL 3 63.74±1.57 165.48±7.37
  100 μg/mL 3 72.68±0.84## 146.31±3.59##
  200 μg/mL 3 72.35±0.71## 158.15±9.46#
表 2  各组细胞损伤情况比较
组别 n 细胞凋亡率 游离钙离子浓度
与正常对照组比较,*P<0.05,**P<0.01;与模型对照组比较,#P<0.05,##P<0.01.4-PBA:4-苯基丁酸;IGRS:玄参环烯醚萜苷.
正常对照组 3 8.10±0.60 100.00±11.83
4-PBA对照组 3 6.37±0.35 90.47±3.03
IGRS对照组
  50 μg/mL 3 8.50±0.75 97.14±5.43
  100 μg/mL 3 8.33±0.32 95.74±15.95
  200 μg/mL 3 7.93±0.68 101.10±28.90
模型对照组 3 24.13±0.57** 519.74±30.25*
4-PBA实验组 3 13.77±0.74## 237.52±32.63#
IGRS实验组
  50 μg/mL 3 22.10±0.61 337.63±8.24
  100 μg/mL 3 14.80±0.44## 251.07±23.82#
  200 μg/mL 3 15.80±1.82 186.40±33.38##
表 3  各组细胞凋亡率和细胞质中游离钙离子浓度比较
图 1  流式细胞仪检测各组细胞凋亡结果
图 2  各组细胞质中游离钙离子荧光图
组别 IP3R1 RyR2 SERCA2
与正常对照组比较,*P<0.05,**P<0.01;与模型对照组比较,#P<0.05,##P<0.01.IGRS:玄参环烯醚萜苷;Ip3R1:1, 4, 5-三磷酸肌醇受体1;RyR2:兰尼碱受体2;SERCA2:肌浆网钙泵2.
正常对照组 1.000 1.000 1.000
模型对照组 2.243±0.103* 2.555±0.058** 0.259±0.025**
IGRS实验组
  50 μg/mL 2.090±0.130 2.050±0.110 0.340±0.030#
  100 μg/mL 1.804±0.130 1.810±0.120# 0.481±0.030##
  200 μg/mL 1.906±0.040 1.742±0.100# 0.501±0.020##
表 4  各组IP3R1、RyR2、SERCA2 mRNA相对表达量比较
图 3  各组内质网应激相关蛋白表达电泳图
组别 n Bax Bcl-2 Bcl-2/Bax CHOP caspase-12 GRP78
与正常对照组比较,**P<0.01;与模型对照组比较,#P<0.05,##P<0.01.4-PBA:4-苯基丁酸;IGRS:玄参环烯醚萜苷;Bax:Bcl-2相关X蛋白;Bcl-2:B细胞淋巴瘤-2;CHOP:CCAAT/增强子结合蛋白同源蛋白;caspase-12:半胱氨酸天冬氨酸蛋白酶12;GRP78:葡萄糖调节蛋白78.
正常对照组 3 1.000±0.320 1.000±0.046 1.000 1.000±0.090 1.000±0.120 1.000±0.160
4-PBA对照组 3 1.130±0.240 0.969±0.060 0.971±0.080 1.110±0.120 0.980±0.120 0.950±0.100
IGRS对照组
  50 μg/mL 3 1.310±0.390 0.950±0.100 0.950±0.090 1.010±0.150 1.120±0.220 1.110±0.180
  100 μg/mL 3 1.140±0.390 0.964±0.120 0.967±0.150 1.030±0.080 0.990±0.160 1.240±0.130
  200 μg/mL 3 1.150±0.360 0.978±0.100 0.980±0.120 0.980±0.130 1.000±0.090 1.040±0.020
模型对照组 3 4.020±0.260** 0.546±0.010** 0.546±0.030** 6.900±0.240** 2.230±0.090** 3.460±0.070**
4-PBA实验组 3 2.880±0.550## 0.811±0.060## 0.811±0.050## 4.420±0.470## 1.530±0.100## 2.580±0.270##
IGRS实验组
  50 μg/mL 3 3.490±0.370 0.661±0.210 0.662±0.031 6.860±0.310 2.090±0.070 3.300±0.160
  100 μg/mL 3 3.080±0.200## 0.765±0.065## 0.765±0.047## 4.690±0.520## 1.560±0.140## 2.700±0.190##
  200 μg/mL 3 3.30±0.360# 0.760±0.079## 0.761±0.077## 5.550±0.400## 1.420±0.240## 2.870±0.290##
表 5  各组内质网应激相关蛋白表达量比较
1 梁刚, 牛育苗, 李一涵 et al. 雷帕霉素在大鼠局灶性脑缺血再灌注后24 h给药对脑损伤的保护作用[J]. 浙江大学学报(医学版), 2018, 47 (5): 443- 449
LIANG Gang , NIU Yumiao , LI Yihan . Rapamycin treatment starting at 24 h after cerebral ischemia/reperfusion exhibits protective effect on brain injury in rats[J]. Journal of Zhejiang University (Medical Sciences), 2018, 47 (5): 443- 449
doi: 10.3785/j.issn.1008-9292.2018.10.01
2 LIN L, WANG K, YU Z. Ischemia-reperfusion injury in the brain: mechanisms and potentialtherapeutic strategies[J/OL]. Biochem Pharmacol (Los Angel), 2016, 5(4). DOI: 10.4172/2167-0501.1000213.
3 ZHANG H Y , WANG Z G , LU X H et al. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases[J]. Mol Neurobiol, 2015, 51 (3): 1343- 1352
doi: 10.1007/s12035-014-8813-7
4 BODALIA A , LI H , JACKSON M F . Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia[J]. Acta Pharmacol Sin, 2013, 34 (1): 49- 59
doi: 10.1038/aps.2012.139
5 OKUBO Y . Neuronal cell death induced by the disruption of endoplasmic reticulum-mediated Ca2+ signaling[J]. Nihon Yakurigaku Zasshi, 2019, 153 (4): 155- 160
doi: 10.1254/fpj.153.155
6 国家药典委员会.中华人民共和国药典(一部)[S].北京: 中国医药科技出版社, 2020: 124.
National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (Part 1) [S]. Beijing: China Medical Science Press, 2020: 124. (in Chinese)
7 GONG P Y, HE Y W, QI J, et al. Synergistic nourishing 'Yin' effect of iridoid and phenylpropanoid glycosides from radix scrophulariae in vivo and in vitro[J/OL]. J Ethnopharmacol, 2020, 246: 112209. DOI: 10.1016/j.jep.2019.112209.
8 CHEN Y Y , ZHANG L , GONG X Y et al. Iridoid glycosides from radix scrophulariae attenuates focal cerebral ischemia-reperfusion injury via inhibiting endoplasmic reticulum stress-mediated neuronal apoptosis in rats[J]. Mol Med Rep, 2020, 21 (1): 131- 140
doi: 10.3892/mmr.2019.10833
9 李祚丹, 季金苟, 楚莎莎 et al. 玄参中环烯醚萜类物质的分离纯化工艺[J]. 中成药, 2015, 37 (6): 1367- 1369
LI Zuodan , JI Jingou , CHU Shasha et al. Study on purification of iridoids from figwort[J]. Chinese Traditional Patent Medicine, 2015, 37 (6): 1367- 1369
doi: 10.3969/j.issn.1001-1528.2015.06.049
10 WANG K , CHEN M , GONG H P et al. Calcium homeostasis disruption and endoplasmic reticulum stress mediats ischemia/reperfusion-induced PC12 cells apoptosis[J]. Int J Clin Exp Med, 2017, 10 (9): 14121- 14129
11 CHO S K , YOON S Y , HUR C G et al. Acetylcholine rescues two-cell block through activation of IP3 receptors and Ca2+/calmodulin-dependent kinase Ⅱ in an ICR mouse strain[J]. Pflugers Arch, 2009, 458 (6): 1125- 1136
doi: 10.1007/s00424-009-0686-7
12 吴勉华, 王新月 . 中医内科学[M]. 北京: 中国中医药出版社, 2012: 288- 289
WU Mianhua , WANG Xinyue . Internal medicine of traditional Chinese medicine[M]. Beijing: China Press of Traditional Chinese Medicine, 2012: 288- 289
13 SU Y , LI F . Endoplasmic reticulum stress in brain ischemia[J]. Int J Neurosci, 2016, 126 (8): 681- 691
doi: 10.3109/00207454.2015.1059836
14 FONT-BELMONTE E , GONZáLEZ-RODRíGUEZ P , FERNáNDEZ-LóPEZ A . Necroptosis in global cerebral ischemia: a role for endoplasmic reticulum stress[J]. Neural Regen Res, 2020, 15 (3): 455- 456
doi: 10.4103/1673-5374.266054
15 WEI H F , INAN S . Dual effects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2013, 47:156- 161
doi: 10.1016/j.pnpbp.2013.05.009
16 ANSARI N , HADI-ALIJANVAND H , SABBAGHIAN M et al. Interaction of 2-APB, dantrolene, and TDMT with IP3R and RyR modulates ER stress-induced programmed cell death Ⅰ and Ⅱ in neuron-like PC12 cells: an experimental and computational investigation[J]. J Biomol Struct Dyn, 2014, 32 (8): 1211- 1230
doi: 10.1080/07391102.2013.812520
17 ZHAO H , TONG G , LIU J et al. IP3R and RyR channels are involved in traffic-related PM2.5-induced disorders of calcium homeostasis[J]. Toxicol Ind Health, 2019, 35 (5): 339- 348
doi: 10.1177/0748233719843763
18 HAMMADI M , OULIDI A , GACKIèRE F et al. Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: involvement of GRP78[J]. FASEB J, 2013, 27 (4): 1600- 1609
doi: 10.1096/fj.12-218875
19 YE Z , WANG N , XIA P P et al. Parecoxib suppresses CHOP and Foxo1 nuclear translocation, but increases GRP78 levels in a rat model of focal ischemia[J]. Neurochem Res, 2013, 38 (4): 686- 693
doi: 10.1007/s11064-012-0953-4
20 LEI X , LEI L , ZHANG Z et al. Diazoxide inhibits of ER stress-mediated apoptosis during oxygen-glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo[J]. Mol Med Rep, 2018, 17 (6): 8039- 8046
doi: 10.3892/mmr.2018.8925
21 SCH?NTHAL A H . Pharmacological targeting of endoplasmic reticulum stress signaling in cancer[J]. Biochem Pharmacol, 2013, 85 (5): 653- 666
doi: 10.1016/j.bcp.2012.09.012
22 ZHANG A , ZHANG J , SUN P et al. EIF2alpha and caspase-12 activation are involved in oxygen-glucose-serum deprivation/restoration-induced apoptosis of spinal cord astrocytes[J]. Neurosci Lett, 2010, 478 (1): 32- 36
doi: 10.1016/j.neulet.2010.04.062
23 ADAMS C M , KIM A S , MITRA R et al. BCL-W has a fundamental role in B cell survival and lymphomagenesis[J]. J Clin Invest, 2017, 127 (2): 635- 650
doi: 10.1172/JCI89486
[1] 郑心甜,甘海燕,李琳,胡小伟,方燕,储利胜. 黄芪甲苷通过促进小胶质细胞/巨噬细胞M2型极化抑制大鼠脑缺血后炎症反应[J]. 浙江大学学报(医学版), 2020, 49(6): 679-686.
[2] 李璐, 方俊君, 李志涛, 沈磊星, 王国彬, 傅水桥. 革兰阳性菌及革兰阴性菌感染脓毒症患者外周血单个核细胞关键基因鉴定及共表达网络分析[J]. 浙江大学学报(医学版), 2020, 49(6): 732-742.
[3] 楼招欢,赵华军,吕圭源. “肺与大肠相表里”的黏膜免疫调节机制及中药干预作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 665-678.
[4] 王华英, 吕佳佩, 陈丽萍, 俞万钧. 趋化因子CXCL12可能参与白细胞介素17A对小鼠肺成纤维细胞的活化[J]. 浙江大学学报(医学版), 2020, 49(6): 758-764.
[5] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[6] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[7] 郑双双,赵经纬. 复髓鞘机制及其在多发性硬化症脱髓鞘模型中的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 524-530.
[8] 王晓波,张兆辉,吴章强,孙跃宗,章义利,龚鸣,季峰. 基于白蛋白胆红素指数的肝细胞癌根治性手术患者中期死亡风险预测模型评估[J]. 浙江大学学报(医学版), 2020, 49(3): 375-382.
[9] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[10] 徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.
[11] 方娟,潘志成,郭晓纲. INK4基因座中反义非编码RNA调控细胞增殖与凋亡影响动脉粥样硬化的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 113-117.
[12] 张大勇,林九洲,王雅艳,许珊,罗成专,蔡佳烨,蒋学范,潘建平. 白藜芦醇通过保护线粒体功能延缓骨髓间充质干细胞衰老[J]. 浙江大学学报(医学版), 2019, 48(6): 617-624.
[13] 徐美娇,王一枫. 二苯乙烯苷可抑制中波紫外线诱导的人皮肤成纤维细胞光老化[J]. 浙江大学学报(医学版), 2019, 48(6): 625-630.
[14] 刘婧雯,杨兴莲,沈凯莉,曾玲晖,孙燕. 氯氧喹通过下调Rho/Rho激酶信号通路抑制乳腺癌细胞转移[J]. 浙江大学学报(医学版), 2019, 48(6): 631-637.
[15] 姚旺祥,戴晗豪,桂鉴超. 机械应力促进炎性环境中软骨修复的机制研究[J]. 浙江大学学报(医学版), 2019, 48(5): 517-525.